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Preface

These notes are designed to provide a structured and comprehensive understanding of the
course content. They will cover key topics, concepts, and computational techniques that are
fundamental to numerical analysis. Please note that this is the first iteration (Version 0.1.0) of
the notes and hence there is a chance that some of the content is incorrect. If you find some
flaws, please email me at abhinav.jha@iitgn.ac.in.
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Chapter 1

Interpolation

Interpolation has various definitions depending on the search engine. For example, Wikipedia
states,

“Interpolation is a type of estimation, a method of constructing (finding) new data
points based on the range of a discrete set of known data points.”

Blackphoto says,

“It is a technique used by digital scanners, cameras, and printers to increase the size of
an image in pixels by averaging the colour and brightness values of surrounding pixels.”

One can see such an example in image processing. A rather famous (or infamous)
example is the Ecce Homo painting (see Fig. 1 (left)). This is a fresco painting painted in 1930
by the Spanish painter Elías García Martínez depicting Jesus Christ. With wear and tear, the
painting got degraded, and in 2012, an 81-year-old lady, Cecilia Giménez “tried” to restore it
(see Fig. 1 (right)); as we can see, it is not very good, and hence it was named Ecce Mono. We
can get much better results with modern image processing techniques (which inherently use a
form of interpolation).

Figure 1.1: Elías García Martínez, Ecce Homo: The leftmost photograph, taken in 2010, shows
some initial flaking of the paintwork. The central photograph was taken in July 2012, just a
month before the attempted restoration, showing the extent of damage and deterioration. The
rightmost photograph documents the artwork following Giménez’s efforts to repair it.

In interpolation, we try to approximate general functions by a “simple” class of functions.
In analysis, a powerful result connects the continuous functions and polynomial approximation:
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the Weierstrass Approximation theorem given by Karl Weierstrass.

Figure 1.2: Karl Weierstrass: 31 October 1815-19 February 1897

Theorem 1.1. [1, Theorem 5.4.14] (Weierstrass Approximation Theorem) Let
f ∈ C[a, b]. Then for each ε > 0 there exists a polynomial p(x) with the property that

|f(x)− p(x)| < ε for all x ∈ [a, b].

This theorem is important because polynomials have excellent differentiation and inte-
gration properties as their derivatives and integrals are polynomials. Another interpretation of
Theorem 1 is that given a continuous function on a closed and bounded interval, there exists a
polynomial, i.e. , as “close” to the given function as desired.

But in analysis, there exists one more kind of polynomial approximation, and that is
the Taylor’s theorem

Theorem 1.2. [1, Theorem 6.4.1] (Taylor’s Theorem) Suppose f ∈ Cn[a, b] and f (n+1)

exists on [a, b] and x0 ∈ [a, b]. For every x ∈ [a, b] there exists a number ξ(x) ∈ [x0, x]
with

f(x) = Pn(x) +Rn(x),

where Pn(x) =
∑n

k=0
f (k)(x0)

k!
(x− x0)

k and Rn(x) =
f (n+1)(ξ(x))

(n+1)!
(x− x0)

n+1.

Figure 1.3: Brook Taylor: 18 August 1685-29 December 1731

There are two issues here:

1. We need to know the higher derivatives of f(x).
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2. This is a local approximation, i.e., the approximation is excellent near x0 but we need
certain global approximation. For example, if we do the Taylor series expansion for exp(x)
around zero, then it becomes worse as we move away from zero (see Fig. 1.4).
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Figure 1.4: Taylor polynomials for exponential function approximated at x = 0.

However, it should be noted that the Taylor theorem is still a powerful result whose
main purpose is the derivation of numerical techniques and error estimation.

1.1 Polynomial Interpolation
Suppose we have a finite set of data points fi associated with parameters xi. We want to depict
these data points as a function f(x) with the property that f(xi) = fi. This is clearly not
well-defined since there are many such functions. But if we restrict to finite-dimensional spaces
(such as polynomials), then we can define such functions, or to be more precise, the process is
well-defined.

We first start with the idea of polynomial interpolation. Polynomials representing an
unknown functional dependence of the discrete set of data points are called interpolants. The
main problem that we want to tackle with interpolation is:

Problem: Given a set of (n+ 1) data points say {(xi, fi)}ni=0 find a polynomial pn(x)
of degree n satisfying

pVn(xi) = fi for all i = 0, 1, . . . , n.

Now the general form of a polynomial pVn(x) is given by

pVn(x) =
n∑

i=0

cix
n−i := c0x

n + c1x
n−1 + · · ·+ cn,

for coefficients ci ∈ R. Since each polynomial of degree n can be determined by (n + 1)
coefficients, we can re-write the above problem as solving the following system of equations:

c0x
n
i + c1x

n−1
i + · · ·+ cn−1xi + cn = fi i = 0, 1, 2, . . . , n,
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or in the matrix form
Vc = f (1.1)

where

V =


xn
0 xn−1

0 . . . x0 1
xn
1 xn−1

1 . . . x1 1
...

... . . . ...
...

xn
n xn−1

n . . . xn 1

 , c =


c0
c1
...
cn

 , and f =


f0
f1
...
fn

 .

This system has a unique solution if V is invertible [5, Theorem 3.10], which is equivalent
to saying that det(V) ̸= 0. This matrix V is called as the Vandermonde matrix and it’s
determinant is given by

det(V) =
n−1∏
i=0

n∏
j=i+1

(xi − xj).

Figure 1.5: Alexandre-Théophile Vandermonde: 28 February 1735 – 1 January 1796

This determinant is non-zero if we have distinct points. Hence, from now on, we assume
we have (n+ 1) distinct points.

The algorithm for using the polynomial interpolation using Vandermonde matrix for
finding solution at a given point xeval is given in Algorithm 1.

Note that we have introduced the notation pVn(x) only to denote the polynomial pn(x)
computed using the Vandermonde matrix.

1.1.1 Drawbacks

Even though Eq. (1.1) has a perfect mathematical solution, computationally, it is not that
good. The reason being Vandermonde matrices are ill-conditioned1 (we will do conditioning of
a system in the following chapters). The matrix V has a large condition number leading to
inaccurate solutions.

To understand why the Vandermonde matrix is ill-conditioned for large n, we can plot
xk for 0 ≤ k ≤ n in [0, 1] (see Fig. 1.6). Even though xk are distinct for larger k, they tend to
look the same. As a result, it is harder to identify projections of a particular polynomial pVn(x)
into the nearly collinear basis of monomials xk for large k.

1Ill-Conditioned System: In numerical analysis, the condition number of a function quantifies the extent
to which the output can change in response to small variations in the input. It measures a function’s sensitivity
to input changes or errors, indicating how much an input error can propagate into the output. A problem with
a low condition number is said to be well-conditioned while a problem with a high condition number is said to
be ill-conditioned.
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Algorithm 1 Vandermonde Interpolation

Given: Data sets {(xi, fi)}ni=0, Evaluation point xeval.
Find: Interpolated polynomial pVn(xeval).

Step 1: Compute Vandermonde Matrix
Initialize an empty Vandermonde matrix V of size (n+ 1)× (n+ 1)
for i = 0 to n do

for j = 0 to n do
Vi,j = x

(n−j)
i

end for
end for

Step 2: Solve the System of Linear Equations
Solve the system V · c = f to get coefficient vector c

Step 3: Evaluate the Vandermonde Polynomial pVn(x) at xeval

Initialize pVn(xeval) = 0
for i = 0 to n do
pVn(xeval) = pVn(xeval) + ci · x(n−i)

eval

end for

return pVn(xeval)
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x3

x4

x5

Figure 1.6: Monomial basis xk for k = 0, 1, . . . , 5.

1.2 Lagrange Interpolation

After examining how unstable polynomial interpolation is, we need to develop more stable
methods. One of the most known methods is the Lagrange interpolation. The formula was
first published by Waring in 1779, rediscovered by Euler in 1783, and published by Lagrange
in 1795 (Jeffreys & Jeffreys, 1988).

Let us start with a basic example of two points (x0, f0) and (x1, f1), then we define
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Figure 1.7: Joseph-Louis Lagrange: 25 January 1736-10 April 1813

functions:
L0(x) =

x− x1

x0 − x1

and L1(x) =
x− x0

x1 − x0

. (1.2)

Then, a linear interpolating polynomial passing through the above points is given by:

p1(x) = L0(x)f0 + L1(x)f1 =
x− x1

x0 − x1

f0 +
x− x0

x1 − x0

f1,

as L0(x0) = 1;L0(x1) = 0;L1(x0) = 0; and L1(x1) = 1, we have p1(x0) = f0 and p1(x1) = f1.
This polynomial is called the Lagrange linear interpolating polynomial. In fact, this is a unique
polynomial. Fig. 1.8 shows L0(x) and L1(x) for x0 = 0 and x1 = 1.

0 0.2 0.4 0.6 0.8 1
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0.2

0.4
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x

Lagrange Linear Interpolants

L0(x)
L1(x)

Figure 1.8: Lagrange linear interpolating polynomials for xi = {0, 1}.

What happens if we generalize this concept, i.e., we have {(xi, fi)}ni=0? In this case we
first need to construct for each i = 0, 1, . . . , n a function Ln,i(x) with the property that

Ln,i(xk) = δik for k = 0, . . . , n.

Based on Eq. (1.2) the general form should look like:

Ln,i(x) =
n∏

j=0,j ̸=i

(
x− xj

xi − xj

)
.

Then, we can define the polynomial as

pLn(x) =
n∑

i=0

fiLn,i(x), (1.3)
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where we have used the notation pLn(x) to denote the interpolating polynomial obtained by the
Lagrange interpolation. If the degree of the polynomial is clear we can write Ln,i(x) as Li(x).
We call Ln,i(x) as the nth Lagrange interpolating polynomial (see Fig. 1.9). One can compute
the Lagrange interpolating polynomial using algorithm 2.

0 1 2 3 4

−0.5

0

0.5

1

x

Lagrange Interpolants

L0(x)
L1(x)
L2(x)
L3(x)
L4(x)

Figure 1.9: Lagrange interpolating polynomials defined over xi = 0, 1, 2, 3, 4.

We have certain remarks for the Lagrange interpolation:

1. We note that in Eq. (1.3) pLn(x) maps the linear space Rn+1 to the space of polynomials
Pn which is a linear map.

2. We can extend the Lagrange interpolant to any continuous function f(x) by

pLnf(x) =
n∑

i=0

f(xi)Li(x).

3. The operator pLn(x) is a projection, i.e., pLnq = q for all q ∈ Pn.

Now we present a theorem that tells us about the error obtained using Lagrange inter-
polation.

Theorem 1.3. Suppose {x0, x1, . . . , xn} are distinct numbers in the interval [a, b] and
f ∈ Cn+1[a, b]. Then for each x ∈ [a, b] there exists a number ξ(x) ∈ (a, b) with

f(x) = pLn(x) +
f (n+1) (ξ(x))

(n+ 1)!

n∏
i=0

(x− xi), (1.4)

where pLn(x) is given by Eq. (1.3).

Proof. Note that if x = xk then f(xk) = pLn(xk) for any k = 0, 1, . . . , n. Hence Eq. (1.4) is
trivial for any ξ(x) ∈ (a, b).
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Suppose x ̸= xk for any k = 0, 1, . . . , n then define a function g for t in [a, b] as

g(t) = f(t)− pLn(t)−
[
f(x)− pLn(x)

] n∏
i=0

(t− xi)

(x− xi)
.

Since f ∈ Cn+1[a, b] and pLn ∈ C∞[a, b] we have g ∈ Cn+1[a, b].

Theorem 1.4. [3, Theorem 1.10](Generalized Rolle’s Theorem)

Suppose f ∈ C[a, b] is n-times differentiable on (a, b). If f(x) = 0 at (n+1) distinct
points a ≤ x0 < x1 < · · · < xn ≤ b then there exists a number c ∈ (x0, xn) (⊂ (a, b))
such that f (n)(c) = 0.

For t = xk for any k, we have

g(xk) = f(xk)− pLn(xk) = 0.

Moreover g(x) = 0. Thus g ∈ Cn+1[a, b] with (n + 2) distinct zeros. By Generalized Rolle’s
theorem 1.2 there exists a ξ ∈ (a, b) for which g(n+1)(ξ) = 0. So,

0 = g(n+1)(ξ) = f (n+1)(ξ)− pL(n+1)
n (ξ)−

[
f(x)− pLn(x)

] dn+1

dtn+1

[
n∏

i=0

(t− xi)

(x− xi)

]
t=ξ

. (1.5)

Now, pLn(x) is a polynomial of degree at most n. Hence, pL(n+1)
n (x) = 0. Also,

∏n
i=0

(t−xi)
(x−xi)

is a
polynomial of degree (n+ 1) with leading coeffecient being 1∏n

i=0(x−xi)
. Hence,

dn+1

dtn+1

(
n∏

i=0

(t− xi)

(x− xi)

)
=

(n+ 1)!∏n
i=0(x− xi)

.

Hence, Eq. (1.5) becomes

f (n+1)(ξ)−
[
f(x)− pLn(x)

] (n+ 1)!∏n
i=0(x− xi)

= 0 ⇒ f(x) = pLn(x) +
f (n+1)(ξ)

(n+ 1)!

n∏
i=0

(x− xi).

Note that this error term is similar to Taylor’s theorem, but it has information on all
the points instead of the error being concentrated along one point.

1.2.1 Drawbacks

Lagrange interpolant suffers from certain drawbacks. The first one is regarding its computational
complexity2. For the evaluation of an unknown point x, we will check the computational

2Computational Complexity: Computational complexity measures how hard it is for a computer to solve
a problem as the size of the problem increases. It tells us how much time and resources are needed to find a
solution.
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Algorithm 2 Lagrange Interpolation

Given: Data sets {(xi, fi)}ni=0, Evaluation point xeval.
Find: Interpolated polynomial pLn(xeval).

Step 1: Compute Lagrange Basis Polynomials Li(x)
for i = 0 to n do
Li(xeval) = 1
for j = 0 to n do

if j ̸= i then
Li(xeval) = Li(xeval)× xeval−xj

xi−xj

end if
end for

end for

Step 2: Compute Lagrange Polynomial pLn(x) at xeval

Initialize pLn(xeval) = 0
for i = 0 to n do
pLn(xeval) = pLn(xeval) + fi × Li(xeval)

end for

return pLn(xeval)

complexity. An individual Lagrange interpolating polynomial of degree n looks like

Li(x) =
n∏

j=0,j ̸=i

(x− xj)

(xi − xj)
,

and then pLn(x) = f0 + L0(x) + f1L1(x) + · · · + fnLn(x). For the computation of each Li(x)
we need O(n) multiplications. As we have (n+ 1) points, we need O (n2 + n) operations. The
final operation for computing of pLn(x) is of multiplication and addition and hence a total of
O(n) operations. Therefore, in totality, we need O(n2) operations, which is not very nice as,
generally, we prefer to have linear (O(n)) complexity.

Apart from the above drawback, another major drawback is that if we want to add a
new point, say (xn+1, fn+1), then we need to perform new computations from scratch.

But there are advantages as well; for example, the computation of {Li(x)}ni=0 is inde-
pendent of f(xk). Another one is that it does not depend on the arrangement of nodes.

1.2.2 Runge Phenomena

In 1901, Carl David Tolmé Runge observed that while approximating

f(x) =
1

1 + 25x2
, x ∈ [−1, 1],

using polynomial approximation, there are large errors at the endpoints of the interval while
using equally spaced points (see Fig. 1.11). This is what is called as the Runge phenomena and
the above function is called the Runge function.
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Figure 1.10: Carl David Tolmé Runge: 30 August 1856-3 January 1927
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Figure 1.11: Runge phenomena for the function 1/(1+25x2). pL11(x) refers to an approximation
computed using 11 points (the dots refer to {xi}10i=0), pL15(x) refers to approximation using 15
points.

Let us look at the interpolation error and try to understand this phenomenon. In
Theorem 1.3 it was seen that

f(x)− pLn(x) =
f (n+1)(ξ)

(n+ 1)!

n∏
i=0

(x− xi) for ξ ∈ (−1, 1).

Thus, we have

max
−1≤x≤1

|f(x)− pLn(x)| ≤ max
−1≤x≤1

∣∣∣f (n+1)(ξ)

(n+ 1)!

∣∣∣ max
−1≤x≤1

n∏
i=0

|x− xi|.

Now, it can be shown (although not very easily) that max−1≤x≤1

∏n
i=0 |x− xi| ≤ hn+1n! where

h = 2/n and we suppose that the (n+ 1)th derivative of f(x) can be bounded by Mn+1 which
in turn can be bounded by 5n+1(n+ 1)! (see this PDF). Hence in total

lim
n→∞

(
max

−1≤x≤1
|f(x)− pLn(x)|

)
≤ lim

n→∞

((
10

n

)n+1

n!

)
= ∞.

To mitigate this problem, one idea is to use a non-uniform grid with points accumulated
at the endpoints. If one is interested, I suggest this excellent review paper by Berrut and
Trefethen [2].

https://www.tlu.ee/~tonu/Arvmeet/2020/Interpoleerimisvead_Runge_fenomen/Runge's_phenomenon.pdf
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1.3 Newton Divided Difference Interpolation
We noticed in Sec. 1.2 that Lagrange interpolation suffers from O(n2) evaluation computational
complexity. Now, we have another interpolating method that overcomes this and is referred to
as the Newton Divided Differences.

Figure 1.12: Isaac Newton: 4 January 1643-31 March 1727

Let pn(x) be a polynomial interpolating the data points {(xi, fi)}ni=0. Another way of
expressing such a polynomial is

pn(x) = a0 + a1(x− x0) + a2(x− x0)(x− x1) + · · ·+ an

n−1∏
i=0

(x− xi), (1.6)

for appropriate constants {ai}ni=0. Now, the question is, how do we determine these coefficients?
At x = x0 we have pn(x0) = f0. Hence, y0 = a0. Similarly at x = x1, pn(x1) = f1 which implies

a1 =
f1 − a0
x1 − x0

=
f1 − f0
x1 − x0

.

Now, we can continue in this manner and compute each ai. For this, we introduce the divided
difference (DD) notation. The zeroth divided difference of a function f(x) with respect to xi is
denoted by f [xi] = f(xi) = fi. For the rest, we define them in a recursive way.

• 1st DD of f(x) with respect to xi and xi+1 is

f [xi, xi+1] =
f [xi+1]− f [xi]

xi+1 − xi

. (1.7)

• 2nd DD of f(x) with respect to xi, xi+1 and xi+2 is

f [xi, xi+1, xi+2] =
f [xi+1, xi+2]− f [xi, xi+1]

xi+2 − xi

. (1.8)

• kth DD of f(x) with respect to xi, xi+1, . . . , xi+k is

f [xi, xi+1, . . . , xi+k−1, xi+k] =
f [xi+1, . . . , xi+k]− f [xi, . . . , xi+k−1]

xi+k − xi

. (1.9)

• nth DD of f(x) with respect to x0, x1, . . . , xn is

f [x0, x1, . . . , xn] =
f [x1, . . . , xn]− f [x0, . . . , xn−1]

xn − x0

. (1.10)
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Hence, we can rewrite the polynomial pn(x) defined in Eq. (1.6) as

pNn(x) = f [x0] +
n∑

k=1

f [x0, x1, . . . , xk](x− x0)(x− x1) . . . (x− xk−1). (1.11)

We have introduced the notation pNn(x) to identify the Newton DD polynomial.

For simplicity, let us look at the DD table we obtain for 4 points (see Table 1.1)

x f(x) = 0th DD 1st DD 2nd DD 3rd DD
x0 f [x0]

f [x0, x1] =
f [x1]−f [x0]

x1−x0

x1 f [x1] f [x0, x1, x2] =
f [x1,x2]−f [x0,x1]

x2−x0

f [x1, x2] =
f [x2]−f [x1]

x2−x1
f [x0, x1, x2, x3] =

f [x1,x2,x3]−f [x0,x1,x2]
x3−x0

x2 f [x2] f [x1, x2, x3] =
f [x2,x3]−f [x1,x2]

x3−x1

f [x2, x3] =
f [x3]−f [x2]

x3−x2

x3 f [x3]

Table 1.1: Divided difference table for four points x0, x1, x2, x3.

The Lagrange interpolating polynomial has a polynomial basis as Ln,i(x), we can con-
sider the Newton DD as another method with a basis defined by ωi(x) =

∏i−1
k=0(x−xk) for i ≥ 1

and ω0(x) = 1 (see Fig. 1.13).

0 1 2 3 4

0
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15

20

25

x

Newton Basis

ω0(x)
ω1(x)
ω2(x)
ω3(x)
ω4(x)

Figure 1.13: Newton basis polynomials defined over xi = 0, 1, 2, 3, 4.

Now, we try to establish a relation between the DD and the derivatives of f . First, we
recall the mean value theorem

Theorem 1.5. [1, Theorem 6.2.4] (Mean Value Theorem) If f ∈ C[a, b] and f(x) is
differentiable in (a, b) then there exists a c ∈ (a, b) such that

f ′(c) =
f(b)− f(a)

b− a
.
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Now, if we apply the MVT on the interval [xi, xi+1] then there exists a ξ ∈ (xi, xi+1)
such that

f ′(ξ) =
f(xi+1)− f(xi)

xi+1 − xi

= f [xi, xi+1].

In fact, we can generalize this concept.

Theorem 1.6. Suppose that f ∈ Cn[a, b] and x0, x1, . . . , xn are distinct numbers in [a, b].
Then there exists a ξ ∈ (a, b) with

f [x0, x1, . . . , xn] =
f (n)(ξ)

n!
.

Proof. Let g(x) = f(x) − pNn(x). Since, f(xi) = pNn(xi) at i = 0, 1, . . . , n. Then g(x) has
(n+1) distinct zeros in [a, b]. So by generlized Rolle’s theorem 1.2 there exists a ξ ∈ (a, b) with
g(n)(ξ) = 0, so

0 = f (n)(ξ)− pN(n)n (ξ).

Since, pNn(x) is polynomial of degree n with leading coefficient f [x0, x1, . . . , xn], we have

pN(n)n (x) = n!f [x0, x1, . . . , xn] for all x.

Hence,

f [x0, x1, . . . , xn] =
f (n)(ξ)

n!
.

Next, we give a result which gives an explicit representation of the Newton DD formula.

Theorem 1.7. For distinct points x0, . . . , xn, the nth coefficient of the Newton interpo-
lation satisfies

f [x0, x1, . . . , xn] =
n∑

k=0

f(xk)∏
i ̸=k(xk − xi)

,

where f [x0] = f(x0) in the case n = 0.

Proof. Using the representation Eq. (1.11) of the interpolant the nth derivative of pNn(x) is given
by to f [x0, . . . , xn]ω

(n)
n (x) where ωn(x) =

∏n−1
i=0 (x− xi).

Now, the polynomial pNn(x) is just another representation of pLn(x). Hence their nth

derivatives must match.

For the Lagrange polynomial the nth derivative is
∑n

k=0 f(xk)L(n)
k (x) (see Eq. (1.3)).

Hence,

f [x0, x1, . . . , xn]ω
(n)
n (x) =

n∑
k=0

f(xk)L(n)
k (x).
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Now, the kth Lagrange interpolating polynomial is given by

Lk(x) =
∏
j ̸=k

(
x− xj

xk − xj

)
,

and it’s nth derivative L(n)
k (x) = n!∏

j ̸=k(xk−xj)
since xn is the leading term. Since the leading term

in ωn(x) is xn,we get ω(n)
n (x) = n!. Cancelling out these factorial term we get the expression.

The algorithm for computing the Newton DD interpolation is provided in Algorithm 3.

Algorithm 3 Newton Interpolation

Given: Data sets {(xi, fi)}ni=0, Evaluation point xeval.
Find: Interpolated polynomial pNn(xeval).

Step 1: Construct Divided Difference Table
Initialize DD as a zero matrix of size (n+ 1)× (n+ 1).
for i = 0 to n do
DDi,0 = fi

end for
for j = 1 to n do

for i = 0 to n− j do
Compute:

DDi,j =
DDi+1,j−1 −DDi,j−1

xi+j − xi

.

end for
end for

Step 2: Evaluate Newton Polynomial pNn(x) at xeval

Initialize pNn(xeval) = DD0,0.
for k = 1 to n do

Initialize ω = 1.
for j = 0 to k − 1 do
ω = ω × (xeval − xj)

end for
Update the interpolated value:

pNn(xeval) = pNn(xeval) + DD0,k · ω.

end for

return pNn(xeval).
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1.3.1 Computational Complexity

We can rewrite the Newton interpolation as

pNn(x) = a0 + a1(x− x0) + a2(x− x0)(x− x1) + · · ·+ an(x− x0)(x− x1) . . . (x− xn−1)

= a0 + (x− x0) [a1 + (x− x1) {a2 + · · ·+ (x− xn−2) {an−1 + an(x− xn−1)}}] .
We notice that each term requires one multiplication and one addition for evaluation, and we
have n points. Hence, we require 2n operations, which is of O(n), whereas for Lagrange, we
have O(n2).

Another advantage of the Newton interpolation over Lagrange interpolation is that it
is easy to update the DD table whenever we have a new data set as it does not require new
computation only a modification of the DD table.

1.3.2 Forward Difference Formula

Suppose we have an equal spacing of points; then we can rewrite Newton’s formula in a better
way. Let h = xi+1−xi for all i = 0, 1, . . . , n−1 and x = x0+sh. Then we can rewrite Eq. (1.11)
as

pNn(x) = f [x0] + (x− x0)f [x0, x1] + (x− x0)(x− x1)f [x0, x1, x2] + . . .

+(x− x0) . . . (x− xn−1)f [x0, x1, . . . , xn]

= f [x0] + shf [x0, x1] + s(s− 1)h2f [x0, x1, x2] + . . .

+s(s− 1) . . . (s− n+ 1)hnf [x0, x1, . . . , xn]

= f [x0] +
n∑

k=1

s(s− 1) . . . (s− k + 1)hkf [x0, x1, . . . , xk].

Using the binomial coefficient notation

sCk =
s(s− 1) . . . (s− k + 1)

k!
,

we can express

pNn(x) = pNn(x0 + sh) = f [x0] +
n∑

k=1

sCkk!h
kf [x0, x1, . . . , xk].

Let us use the ∆ notation for forward difference, i.e, ∆f(x0) = f(x1) − f(x0). Similarly for
higher differences we use the notation ∆2f(x0) = ∆f(x1) − ∆f(x0), then we can rewrite the
divided differences as

f [x0, x1] =
f [x1]− f [x0]

x1 − x0

=
∆f(x0)

h

f [x0, x1, x2] =
f [x1, x2]− f [x0, x1]

x2 − x0

=
1

2h

∆f(x1)−∆f(x0)

h
=

∆2f(x0)

2!h2

...

f [x0, x1, . . . , xn] =
∆nf(x0)

n!hn
.

Hence,

pNn(x) = f(x0) +
n∑

k=1

sCk∆
kf(x0).
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1.4 Hermite Interpolation

Definition 1.8. Let {x0, x1, . . . , xn} be (n + 1) distinct points in [a, b] and for i =
0, 1, . . . , n let mi be a non-negative integer. Suppose that f ∈ Cm[a, b] where m =
max0≤i≤n mi. The osculating polynomial approximating f(x) is the polynomial p(x) of
least degree such that

dkp(xi)

dxk
=

dkf(xi)

dxk
, for i = 0, 1, . . . , n and k = 0, 1, . . . ,mi.

Not when n = 0 the osculating polynomial approximating f is the mth
0 Taylor polyno-

mial for f at x0. When mi = 0 for all i then the osculating polynomial is the nth Lagrange
polynomial interpolating f at x0, x1, . . . , xn.

Hermite Polynomials

If mi = 1 for all i = 0, 1, . . . , n then we get the Hermite polynomials. For a given function f
these polynomials agree with f at x0, x1, . . . , xn. In addition they agree with there derivatives
as well.

Figure 1.14: Charles Hermite: 24 December 1822- 14 January 1901
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Theorem 1.9. If f ∈ C1[a, b] and x0, x1, . . . , xn ∈ [a, b] are distinct, the unique polyno-
mial of least degree agreeing with f and f ′ at x0, x1, . . . , xn is the Hermite polynomial of
degree at most 2n+ 1 given by

pH2n+1(x) =
n∑

j=0

f(xj)Hn,j(x) +
n∑

j=0

f ′(xj)Ĥn,j(x),

where for Ln,j(x) denoting the jth Lagrange coefficient polynomial of degree n we have

Hn,j(x) = [1− 2(x− xj)Ln,j(xj)
′]L2

n,j(x) and Ĥn,j(x) = (x− xj)L2
n,j(x).

Moreover, if f ∈ C2n+2[a, b] then

f(x) = pH2n+1(x) +
(x− x0)

2(x− x1)
2 . . . (x− xn)

2

(2n+ 2)!
f (2n+2) (ξ(x)) ,

for some unknown ξ(x) ∈ (a, b).

Proof. We know that Ln,j(xi) = δij. Hence when i ̸= j Hn,j(xi) = 0 and Ĥn,j(xi) = 0 whereas
for each i

Hn,i(xi) =
[
1− 2(xi − xi)L′

n,i(xi)
]
L2

n,i(xi) = 1 and Ĥn,i(xi) = (xi − xi)L2
n,i(xi) = 0.

Hence, we can say Hn,j(xi) = δij and Ĥn,j(xi) = 0 for all i, j. As a consequence

pH2n+1(xi) =
n∑

j=0

f(xj)Hn,j(xi) +
n∑

j=0

f ′(xj)Ĥn,j(xi) = f(xi),

so pH2n+1 agrees with f at x0, x1, . . . , xn.

Now we need to show that they match at the derivatives as well, i.e., pH
′

2n+1 and f ′

match at xi. We will tackle this be differentiating both the terms Hn,j and Ĥn,j.

The derivative of Hn,j(x) is given by

H′
n,j(x) =

[
1− 2(x− xj)L′

n,j(xj)
]
2Ln,j(x)L′

n,j(x) + L2
n,j(x)

[
−2L′

n,j(xj)
]

= 2Ln,j(x)
[{

1− 2(x− xj)L′
n,j(xj)

}
L′

n,j(x)− Ln,j(x)L′
n,j(xj)

]
.

As Ln,j(xi) = δij we get that at i ̸= j, H′
n,j(xi) = 0. At i = j we have

H′
n,i(xi) =

[
1− 2(xi − xi)L′

n,i(xi)
]
2Ln,i(xi)L′

n,i(xi) + L2
n,i(xi)

[
−2L′

n,i(xi)
]

=
[
2L′

n,i(xi)− 2L′
n,i(xi)

]
= 0.

Now for the second term the derivative is given by

Ĥ′
n,j(x) = (x− xj)2Ln,j(x)L′

n,j(x) + L2
n,j(x)

= Ln,j(x)
[
2(x− xj)L′

n,j(x) + Ln,j(x)
]
.
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At x = xi we have Ln,j(xi) = δij. Hence Ĥ′
n,j(xi) = 0 if i ̸= j and at i = j

Ĥ′
n,i(xi) = (xi − xi)2Ln,i(xi)L′

n,i(xi) + L2
n,i(xi)

= 1.

Hence Ĥ′
n,j(xi) = δij. Therefore

pH
′

2n+1(xi) =
n∑

j=0

f(xj)H′
n,j(xi) +

n∑
j=0

f ′(xj)Ĥ′
n,j(xi) = f ′(xi).

Therefore pH2n+1 agrees with f and pH
′

2n+1 with f ′ at x0, x1, . . . , xn. So,we have existence of a
polynomial that agrees with f and f ′ at {xi}ni=0.

For the uniqueness we will use the method of contradiction. Suppose there exists
another polynomial of least degree say q(x) such that

q(xi) = f(xi) and q′(xi) = f ′(xi) ∀ i.

Now consider the polynomial D(x) = pH2n+1(x)− q(x) of degree at most (2n+ 1). Obviously

D(xi) = 0 and D′(xi) = 0 ∀ i

Hence xi are distinct roots of multiplicity two. Therefore we have 2n+2 roots, which is a only
possible if D(x) = 0. Hence, we get pH2n+1(x) = q(x) leading to a contradiction.

For showing the error term we will use the same strategy as in theorem 1.3., if x = xi

for some i then we can choose ξ(x) arbitrary.

Suppose x ̸= xi for any i, then define

g(t) = f(t)− pH2n+1(t)−
[
f(x)− pH2n+1(x)

] n∏
i=0

(t− xi)
2

(x− xi)2
.

Now g(x) = 0 and g(xi) = 0 for all i. Hence g(t) has distinct n + 2 roots in [a, b]. Hence, by
Rolle’s theorem g′(t) has n+ 1 distinct roots between x0, x1, . . . , xn and x, say ξ0, ξ1, . . . , ξn.

Now taking the derivative of g(t) with respect to t we get

g′(t) = f ′(t)− pH
′

2n+1(t)−
[
f(x)− pH2n+1(x)

]∏n
i=0(x− xi)2

d

dt

(
n∏

i=0

(t− xi)
2

)

= f ′(t)− pH
′

2n+1(t)−
[
f(x)− pH2n+1(x)

]∏n
i=0(x− xi)2

d

dt

(
(t− x0)

2(t− x1)
2 . . . (t− xn)

2
)

= f ′(t)− pH
′

2n+1(t)−
[
f(x)− pH2n+1(x)

]∏n
i=0(x− xi)2

(
2(t− x0)(t− x1)

2 . . . (t− xn)
2

+(t− x0)
22(t− x1) . . . (t− xn)

2 + · · ·+ (t− x0)
2(t− x1)

2 . . . 2(t− xn)
)

= f ′(t)− pH
′

2n+1(t)− 2

[
f(x)− pH2n+1(x)

]∏n
i=0(x− xi)2

n∑
k=0

(t− xk)
n∏

j=0,j ̸=k

(t− xj)
2

At t = xi for any i we have g′(xi) = 0 for i = 0, 1, . . . , n. Hence, g′(t) has 2n + 2 roots. Using
the generalized Rolle’s theorem on g′(t) and then following the same pattern as in Theorem 1.3
we get the result.
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Theorem 1.9 gives all the details about the Hermite polynomials but it is computation-
ally expensive as we need to compute the Lagrange polynomials and it’s derivatives.
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Figure 1.15: Hermite interpolating polynomials defined over xi = 0, 1, 2, 3.

1.4.1 Hermite Polynomials using Divided Difference

For computing the Hermite polynomials using the Newton DD. We will use the relation between
the nth DD and the nth derivative of f(x) as in Theorem 1.6.

Suppose we have (n+ 1) distinct points {xi}ni=0, we define a new sequence {zi}2n+1
i=0 by

z2i = z2i+1 = xi for each i = 0, 1, . . . , n,

i.e., z0 = z1 = x0, z2 = z4 = x1, and so on. Then we can construct the DD table using these
values. Since z2i = z2i+1 we cannot define f [z2i, z2i+1]. However from Theorem 1.6 we can make
a reasonable substitution that

f [z2i, z2i+1] = f ′(z2i) = f ′(xi).

Hence we can use the derivative entries for the undefined DD.

The remaining entries of the DD are defined in the same manner and we get the Hermite
polynomial as

pH2n+1(x) = f [z0] +
2n+1∑
k=1

f [z0, z1, . . . , zk](x− z0)(x− z1) . . . (x− zk−1).

For an example let us consider a data set of two points x0 and x1. Then the DD table is given
by table 1.2.

The algorithm for Hermite interpolation is given in algorithm 4.
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z f(z) 1st DD 2nd DD 3rd DD
z0 = x0 f [z0] = f(x0)

f [z0, z1] = f ′(x0)

z1 = x0 f [z1] = f(x0) f [z0, z1, z2] =
f [z1,z2]−f [z0,z1]

z2−z0

f [z1, z2] =
f [z2]−f [z1]

z2−z1
f [z0, z1, z2, z3] =

f [z1,z2,z3]−f [z0,z1,z2]
z3−z0

z2 = x1 f [z2] = f(x1) f [z1, z2, z3] =
f [z2,z3]−f [z1,z2]

z3−z1

f [z2, z3] = f ′(x1)
z3 = x1 f [z3] = f(x1)

Table 1.2: Divided difference table for two points and the Hermite polynomial

Algorithm 4 Hermite Interpolation

Given: Data sets {(xi, fi, f
′
i)}

n
i=0, Evaluation point xeval.

Find: Interpolated polynomial pH2n+1(xeval).
Step 1: Create zi and f(zi) arrays
Construct {zi}2n+1

i=0 and {f(zi)}2n+1
i=0

for i = 0 to n do
z2i = z2i+1 = xi, f(z2i) = f(z2i+1) = fi

end for

Step 2: Construct Divided Difference Table
Initialize DD as a zero matrix of size (2n+ 2)× (2n+ 2).
for i = 0 to 2n+ 1 do
DDi,0 = f(zi)

end for
for j = 1 to 2n+ 1 do

for i = 0 to 2n+ 1− j do
if j = 1 and i%2 = 0 then
DDi,j = f ′

i
2

else
Compute:

DDi,j =
DDi+1,j−1 −DDi,j−1

zi+j − zi
.

end if
end for

end for

Step 3: Evaluate Hermite Polynomial pH2n+1(x) at xeval

Initialize pH2n+1(x) = DD0,0.
for k = 1 to 2n+ 1 do

Initialize ω = 1.
for j = 0 to k − 1 do
ω = ω × (xeval − zj)

end for
Update the interpolated value:

pH2n+1(xeval) = pH2n+1(xeval) + DD0,k · ω.

end for

return pH2n+1(xeval).
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1.5 Spline Interpolation

Both Lagrange and Newton interpolation methods suffer from the Runge phenomenon, where
oscillations occur at the edges of the interval, especially with high-degree polynomials. This
issue arises because these methods rely on a single global polynomial, meaning that every
data point influences the entire approximation. This “global approximation” can lead to poor
performance for non-uniform or large datasets.

An alternative approach is to divide the interval into smaller sub-intervals and use
piecewise polynomial approximation. This strategy, known as local interpolation, reduces the
influence of distant data points, resulting in more stable and accurate approximations.

Given a set of points {(xi, fi)}ni=0 we can use piecewise-linear interpolation that consists
of joining set of data points using straight lines (see Fig. 1.16). An immediate disadvantage of
such an interpolation is that the approximating polynomial is not differentiable at the nodal
points which geometrically mean the function is not “smooth”.
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Figure 1.16: Linear spline defined over xi = 0, 1, 2, 3, 4.

To address the limitations of linear interpolation, we use splines , which are piecewise
polynomials of higher degree. The term “spline” was introduced by Isaac Jacob Schoenberg in
the 1930s, inspired by drafting tools called “flat splines”. These tools were used to draw smooth
curves on paper before the advent of computer-aided design. A spline curve behaves like a
flexible beam, ensuring continuity in both slope and curvature.

1.5.1 Cubic Splines

The most common piecewise polynomial approximation uses the cubic polynomials between
each successive pair of nodes and is called cubic spline interpolation (see Fig. 1.18) .
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Figure 1.17: Isaac Jacob Schoenberg: 21 April 1903-21 February 1990
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Figure 1.18: Cubic spline defined over xi = 0, 1, 2, 3, 4.

Definition 1.10. Given a function f defined on [a, b] and a set of nodes a = x0 < x1 <
· · · < xn = b (called knots ), a cubic spline interpolant pS for f is a function that satisfies
the following conditions:

a) pS(x) is a cubic polynomial, whose restriction on the interval [xj, xj +1] is denoted
by pSj (x) for each j = 0, 1, . . . , n− 1.

b) pSj (xj) = f(xj) and pSj (xj+1) = f(xj+1) for j = 0, 1, . . . , n− 1.
c) pSj+1(xj+1) = pSj (xj+1) for j = 0, 1, . . . , n− 2 (implied by b).
d) pS

′
j+1(xj+1) = pS

′
j (xj+1) for j = 0, 1, . . . , n− 2 .

e) pS
′′

j+1(xj+1) = pS
′′

j (xj+1) for j = 0, 1, . . . , n− 2 .
f) One of the following sets of boundary conditions is satisfied:

i) pS
′′
(x0) = pS

′′
(xn) = 0 (natural (or free) boundary).

ii) pS
′
(x0) = f ′(x0) and pS

′
(xn) = f ′(xn) (clamped boundary).

When the free boundary condition occurs the spline is called natural spline . In general
clamped boundary conditions lead to more accurate results but it includes the information
about the derivative of the function which is not easily available.

Notice that we have n intervals and on each interval we have 4 unknowns. Hence we
have a total of 4n unknowns.
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Construction of Cubic Splines

Let [a, b] be an interval. We divide this interval into n subintervals denoted [xj, xj+1] for any
j = 0, 1, 2, . . . , n− 1, then for each subinterval we define a cubic polynomial as

pSj (x) = aj + bj(x− xj) + cj(x− xj)
2 + dj(x− xj)

3.

Since, pSj (x) = f(xj) we get aj = f(xj).

Now from condition c) we have

pSj+1(xj+1) = pSj (xj+1)

aj+1 = aj + bj(xj+1 − xj) + cj(xj+1 − xj)
2 + dj(xj+1 − xj)

3,

for j = 0, 1, 2, . . . , n − 2. Let us denote xj+1 − xj by hj for j = 1, 2, . . . , n − 1. If we define
an = f(xn), then we get the relation

aj+1 = aj + bjhj + cjh
2
j + djh

3
j , for j = 0, 1, . . . , n− 1. (1.12)

We also note that
pS

′

j (x) = bj + 2cj(x− xj) + 3dj(x− xj)
2.

Substituting x = xj, we get pS
′

j (xj) = bj for each j = 0, 1, . . . , n − 2. Defining bn = pS
′
(xn) we

get the relation
bj+1 = bj + 2cjhj + 3djh

2
j for j = 0, 1, . . . , n− 1. (1.13)

Now pS
′′

j (x) = 2cj+6dj(x−xj) and hence pS′′j (xj) = 2cj. Defining pS
′′
(xn) = 2cn, from condition

e) we get
2cj+1 = 2cj + 6djhj for j = 0, 1, . . . , n− 1. (1.14)

Solving for dj in Eq. (1.14) we get dj =
cj+1−cj

3hj
and substituting this back in Eq. (1.12) and

Eq. (1.13) we get

aj+1 = aj + bjhj + cjh
2
j +

(cj+1 − cj)

3hj

h3
j

= aj + bjhj +
(2cj + cj+1)

3
h2
j . (1.15)

bj+1 = bj + 2cjhj + hj(cj+1 − cj). (1.16)

From Eq. (1.15) we get for bj

bj =
aj+1 − aj

hj

− hj

3
(2cj + cj+1). (1.17)

Substituting Eq. (1.17) into Eq. (1.16) we get

aj+2 − aj+1

hj+1

− hj+1

3
(2cj+1 + cj+2) =

aj+1 − aj
hj

− hj

3
(2cj + cj+1) + hj(cj + cj+1)

aj+2 − aj+1

hj+1

− aj+1 − aj
hj

=
cjhj

3
+

2cj+1hj

3
+

2cj+1hj+1

3
+

cj+2hj+1

3

cjhj + 2cj+1(hj + hj+1) + cj+2hj+1 =
3(aj+2 − aj+1)

hj+1

− 3(aj+1 − aj)

hj

,
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for j = 0, 1, 2, . . . , n− 2.

For simplicity we do the shifting of the index by 1. Hence, finally we get the system of
equation as

cj−1hj−1 + 2cj(hj−1 + hj) + cj+1hj =
3

hj

(aj+1 − aj)−
3

hj−1

(aj − aj−1), (1.18)

for j = 1, 2, . . . , n−1. The system of equations given by Eq. (1.18) involves the unknown {ci}ni=0

as the values of {hj}nj=0 and {aj}nj=0 are known. Hence, if we can compute {cj} then we can
compute {bj}n−1

j=0 using Eq. (1.17) and {dj}n−1
j=0 from Eq. (1.14). Hence after these computations

we can compute {pSj (x)}n−1
j=0 . So if Eq. (1.18) has an unique solution then we are done.

Theorem 1.11. If f is defined at a = x0 < x1 < · · · < xn = b, then f has a unique
natural spline interpolant pS(x) on the nodes x0, x1, . . . , xn, i.e., a spline interpolant that
satisfies the natural boundary condition pS

′′
(a) = pS

′′
(b) = 0.

Proof. Let us consider pS0(x), which is given by pS0(x) = a0+b0(x−x0)+c0(x−x0)
2+d0(x−x0)

3.
Now, pS′′0 (x) = 2c0+6d0(x−x0) and at x = x0, we have pS

′′
0 (x0) = 2c0 = 0 which implies c0 = 0.

Similarly cn = 0.

Let us look at Eq. (1.18)

hj−1cj−1 + 2(hj−1 + hj)cj + hjcj+1 =
3

hj

(aj+1 − aj)−
3

hj−1

(aj − aj−1),

for j = 1, 2, . . . , n− 1. If we substitute for each j we get a system of equation

Sc = v,

where

S =



1 0 0 0 . . . . . . 0 0
h0 2(h0 + h1) h1 0 . . . . . . 0 0
0 h1 2(h1 + h2) h2 . . . . . . 0 0
...

... . . . . . . . . . . . . ...
...

...
... . . . . . . . . . . . . ...

...
0 0 . . . . . . . . . hn−2 2(hn−2 + hn−1) hn−1

0 0 . . . . . . . . . 0 0 1


,

v =


0

3
h1
(a2 − a1)− 3

h0
(a1 − a0)

...
3

hn−1
(an − an−1)− 3

hn−2
(an−1 − an−2)

0

 , and c =


c0
c1
...
cn

 .

We use the following theorem to show that the matrix S is invertible.
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Theorem 1.12. (Strictly Diagonal Dominant Matrix)

A strictly diagonally dominant matrix A is nonsingular.

We notice that our matrix S is strictly diagonally dominant3 and hence it is invertible,
which leads to an unique solution.

The algorithm for natural spline interpolation can be found in Algorithm 5 We have a
similar result for the clamped spline interpolation.

Theorem 1.13. If f is defined at a = x0 < x1 < · · · < xn = b and differentiable at a and
b then f has a unique clamped spline interpolant pS(x) on the nodes x0, x1, . . . , xn,i.e.,
a spline interpolant that satisfies the clamped boundary condition pS

′
(a) = f ′(a) and

pS
′
(b) = f ′(b).

Now we present a result regarding the error bound of the spline interpolation but we
will not delve into it’s proof as the proof requires a lot of technicalities from Numerical Analysis
which is out of scope of this lecture.

Theorem 1.14. Let f ∈ C4[a, b] with M = maxa≤x≤b |f (4)(x)|.If pS(x) is the unique
clamped cubic spline interpolant to f with respect to the nodes a = x0 < x1 < · · · < xn = b
then for all x ∈ [a, b]

|f(x)− pS(x)| ≤ 5M

384
max

0≤j≤n−1
(xj+1 − xj)

4 .

A fourth order error bound also exist for the case of natural boundary splines, but they
are more difficult to express. An alternative to the natural boundary condition is the not-a-knot
condition, it states that pS

′′′
(x) has to be continuous at x1 and xn−1.

1.5.2 B-Splines

So far, we have focused on a specific type of spline function called cubic splines. A natural
question arises: can we generalize this to splines of other degrees? The answer to this is yes.
A generalization of the cubic splines is the basis splines or B-splines.

Let {xi}ni=0 be the data points (or knots); then we define the zeroth degree B-spline as

Bj,0(x) =

{
1, x ∈ [xj, xj+1),
0, else,

3Strictly Diagonally Dominant Matrix: A matrix A = {aij}ni=1,j=1 is said to be strictly diagonally
dominant if

|aii| >
∑
j ̸=i

|aij | ∀i.
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Algorithm 5 Cubic Natural Spline Interpolation

Given: Data sets {(xi, fi)}ni=0, Evaluation point xeval.
Find: Interpolated polynomial pS(xeval).

Step 1: Compute hi arrays
Construct {hi}n−1

i=0 ,
for i = 0 to n− 1 do
hi = xi+1 − xi

end for

Step 2: Construct S and v
Initialize S as a zero matrix of size (n+ 1)× (n+ 1) and v as (n+ 1).
for i = 0 to n do

if i = 0 or i = n then
Sii = 1 and vi = 0

else
Sii = 2(hi−1 + hi)
Si,i−1 = hi−1

Si,i+1 = hi

vi =
3
hi
(fi+1 − fi)− 3

hi−1
(fi − fi−1)

end if
end for

Step 3: Solve Sc = v
Solve the system Sc = v to get coefficient vector c.

Step 4: Locate xeval

loc = 0
for i = 0 to n do

if xeval ≤ xi then
loc = i− 1
break

end if
end for

Step 5: Compute bloc and dloc
bloc =

floc+1−floc
hloc

− hloc

3
(2cloc + cloc+1)

dloc =
cloc+1−cloc

3hloc

Step 6: Evaluate Spline Polynomial pS(x) at xeval

pS(xeval) = floc + bloc(xeval − xloc) + cloc(xeval − xloc)
2 + dloc(xeval − xloc)

3

return pS(xeval)

for j = 0, 1, . . . , n− 1. In Fig. 1.19 we have the zero degree spline B0,0(x) for xj = 0. Higher-



MA637 - Numerical Analysis and Computing Winter Semester 2024-2025

degree splines are constructed recursively using lower-degree splines as follows:

Bj,k(x) =
x− xj

xj+k − xj

Bj,k−1(x) +
xj+k+1 − x

xj+k+1 − xj+1

Bj+1,k−1(x) k ≥ 1.

−1 −0.5 0 0.5 1 1.5 2
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0.2
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1

x

B0,0 Spline

Figure 1.19: Zeroth degree B-spline B0,0(x) for xi = 0.

Although not obvious, one can see that Bj,k(x) has one more continuous derivative
than Bj,k−1(x). Thus while Bj,0(x) is discontinuous, Bj,1(x) is continuous, Bj,2(x) ∈ C1(R), and
Bj,3(x) ∈ C2(R).
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Figure 1.20: Higher degree B-spline polynomial for xi = 0.

As the degree of the B-splines increases, they become more smooth, but the support of
Bj,k(x) also increases. Based on these results, we can make the following observations:

1. Bj,k(x) ∈ Ck−1(R) (Continuity).

2. Bj,k(x) = 0 if x /∈ (xj, xj+k+1) (Compact Support) 4.
4Compact Support: Let f : X → R be a real-valued function whose domain is an arbitrary set X. The

support of f written as supp(f), is the set of points in X where f is non-zero, i.e., supp(f) = {x ∈ X : f(x) ̸= 0}.
If supp(f) is a compact set, then the support is referred to as compact support
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3. Bj,k(x) > 0 for x ∈ (xj, xj+k+1) (Positivity).

Note: We can notice from Fig. 1.20 that as the degree of the function increases, the
support of the function increases as well. Hence, we might get points outside [x0, xn]. To
develop the method, we include additional points beyond the original domain as follows:

· · · < x−2 < x−1 < x0 < x1 < · · · < xn < xn+1 < . . . .

Let pSk(x) denote the spline of piecewise polynomial in Pk. Then we have the following two
conditions:

1. pSk(xi) = fi for i = 0, 1, . . . , n.

2. pSk ∈ Ck−1[x0, xn] for k ≥ 1.

Notice that we have an abuse of notation here. In the previous section we used pSj to denote
the restriction to [xj, xj+1], whereas here pSk denote a spline of degree k.

Let cj,k denote the unknown coefficients, then

pSk(x) =
∑
j

cj,kBj,k(x).

Now the question remains on what values of j the summation applies. For the greatest flexibility,
we take j for which

Bj,k(x) ̸= 0 for some x ∈ [x0, xn].

Now, for k ≥ 1,Bj,k(x) has support of (xj, xj+k+1) and hence

pSk(x) =
n−1∑
j=−k

cj,kBj,k(x), k > 1.

The inclusion of negative indices for j arises due to the support of the B-spline at boundary
knots, particularly at x0. For the B-spline Bj,k(x) to contribute at x0, its support must include
x0. Since the support of Bj,k(x) spans from xj to xj+k+1, and the last point of this support is x1

when considering x0, we require j + k+1 = 1. Solving for j, this gives j = −k, which explains
the inclusion of “ghost points” x−1, x−2, . . . , x−k in the extended knot sequence. At the other
boundary, xn, the support extends back to xn−1, ensuring that Bj,k(x) contributes only within
the domain of the spline. To include all valid intervals in the original knot sequence, the upper
bound for j is j ≤ n− 1. Thus, the range of j is determined as −k ≤ j ≤ n− 1, ensuring that
the spline remains well-defined and accounts for boundary contributions at x0 and xn.

Hence we have n + k (include k = 0) coefficients (unknowns) that satisfy the n + 1
interpolation condition,

pSk(xi) = fi =
n−1∑
j=−k

cj,kBj,k(xi) i = 0, 1, . . . , n.

The system becomes underdetermined for higher degrees k, meaning there are more unknowns
than equations. As we observed in the cubic interpolation, we might need to impose more
conditions to get a system of equations.



Chapter 2

System of Equations

In many applications of science and engineering, solving a system of equations is essential. One
prominent example arises in Operations Research, where traffic flow modelling involves solving
such systems. The foundational work of Ford and Fulkerson [4] introduced the maximum flow
problem, which significantly advanced the theory and applications of system-solving techniques.

Figure 2.1: Lester Randolph Ford Jr. (23 September 1927–26 February 2017, left) and Delbert
Ray Fulkerson (14 August 1924–10 January 1976, right).

Another important application arises in the discretisation of differential equations, a
technique widely used in civil, mechanical, and electrical engineering. When differential equa-
tions are discretised, the resulting system of equations often takes the form of a band matrix 1.
Depending on the choice of polynomial approximation used in the discretisation, the resulting
band matrix can be tridiagonal, pentadiagonal, or a more general band matrix. Efficiently
solving these systems is crucial to obtaining solutions to the differential equations.

In this chapter, we first introduce direct methods for solving systems of equations,
followed by iterative methods. Direct methods aim to find the exact solution theoretically in
a finite number of steps, though practical computations are subject to round-off errors, which
must be carefully managed to ensure accuracy.

1Band Matrix: A matrix {aij}ni,j=1 is called a band matrix if all elements outside a certain diagonal band
are zero. The band is determined by:

aij = 0 if j < i− k1 or j > i+ k2; k1, k2 ≥ 0,

where k1 and k2 are the lower and upper bandwidths, respectively. Special cases include diagonal matrices
(k1 = k2 = 0) and tridiagonal matrices (k1 = k2 = 1).

35
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2.1 Gaussian Elimination

The most fundamental method that one studies in linear algebra for solving the system of equa-
tion is the Gaussian elimination. Even though the method has been developed independently
in ancient China and early modern Europe, it became popular due to Gauss and hence it was
named Gaussian elimination by George Forsythe.

Figure 2.2: Carl Friedrich Gauss: 30 April 1777-23 February 1855.

Suppose we have a system of n equations for n variables of the form

R1 : a11x1 + a12x2 + · · ·+ a1nxn = b1

R2 : a21x1 + a22x2 + · · ·+ a2nxn = b2
...

...
Rn : an1x1 + an2x2 + · · ·+ annxn = bn. (2.1)

In Eq. (2.1) the matrix {aij}ni,j=1 and the vector {bi}ni=1 are given and the {xi}ni=1 are the
unknowns.

These system of equations follow certain rules due to which we can transform it into
a “simpler” system of equations, i.e., easy to solve. We recall three properties that helps us to
achieve this:

1. Scalar Multiplication: Ri 7→ λRi for λ ∈ R.

2. Scalar Multiplication and Adding: Ri 7→ Ri + λRj for some j = 1, . . . , n and j ̸= i.

3. Transposition: Ri ↔ Rj for i ̸= j.

We can represent the system of equation presented in Eq. (2.1) as a n× (n+1) matrix
[A,b] and this is called as the augmented matrix and is given by

[A,b] =


a11 a12 . . . a1n
a21 a22 . . . a2n
...

... . . . ...
an1 an2 . . . ann

∣∣∣∣∣∣∣∣∣
b1
b2
...
bn

 . (2.2)

The line is shown so as to represent the separation between A and b. The idea of the Gaussian
elimination with backward substitution is to reduce the system provided in Eq. (2.2) to an
upper triangular matrix and then perform backward substitution.
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Let us for the uniformity of the notation denote bi by ai,n+1 for i = 1, 2, . . . , n then

Ã = [A,b] =


a11 a12 . . . a1n
a21 a22 . . . a2n
...

... . . . ...
an1 an2 . . . ann

∣∣∣∣∣∣∣∣∣
a1,n+1

a2,n+1
...

an,n+1

 . (2.3)

Provided a11 ̸= 0 we perform the operations corresponding to

Rj 7→ Rj −
aj1
a11

R1 for j = 2, 3, . . . , n,

to eliminate the coefficient x1 in each of the rows. Once the coefficients of x1 are cancelled, we
do the same for other rows and follow a sequential procedure for i = 2, 3, . . . , n−1 and perform
the operation

Rj 7→ Rj −
aji
aii

Ri for j = i+ 1, i+ 2, . . . , n.

The resulting matrix has the form

˜̃A = [A,b] =


a11 a12 . . . a1n
0 ã22 . . . ã2n
...

... . . . ...
0 0 . . . ãnn

∣∣∣∣∣∣∣∣∣
a1,n+1

ã2,n+1
...

ãn,n+1

 .

This system of equation has the same solution set as Eq. (2.1). But the new system of
equation has the form:

a11x1 + a12x2 + · · ·+ a1nxn = a1,n+1

ã22x2 + · · ·+ ã2nxn = ã2,n+1

...
...

...
ãnnxn = ãn,n+1.

By backward substitution we get

xn =
ãn,n+1

ãnn
.

Solving the (n− 1)th equation for xn−1 and using the value of xn we get

ãn−1,n−1xn−1 + ãn−1,nxn = ãn−1,n+1

xn−1 =
ãn−1,n+1 − ãn−1,nxn

ãn−1,n−1

.

Continuing this process we get

xi =
ãi,n+1 −

∑n
j=i+1 ãijxj

ãii
,

for i = n− 1, n− 2, . . . , 2, 1 where for i = 1, ã1,n+1 = a1,n+1 and ã11 = a11.
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Gaussian elimination can also be seen more precisely by forming a sequence of aug-
mented matrices Ã(1), Ã(2), . . . , Ã(n) where Ã(1) is the matrix given in Eq. (2.3) and a general
Ã(k) matrix for k = 2, 3, . . . , n is given by

Ã(k) =



a
(1)
11 a

(1)
12 a

(1)
13 . . . a

(1)
1,k−1 a

(1)
1,k . . . a

(1)
1,n

0 a
(2)
22 a

(2)
23 . . . a

(2)
2,k−1 a

(2)
2,k . . . a

(2)
2,n

...
...

... . . . ...
... . . . ...

0 0 0 . . . a
(k−1)
k−1,k−1 a

(k−1)
k−1,k . . . a

(k−1)
k−1,n

0 0 0 . . . 0 a
(k)
k,k . . . a

(k)
k,n

...
...

... . . . ...
... . . . ...

0 0 0 . . . 0 a
(k)
n,k . . . a

(k)
n,n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a
(1)
1,n+1

a
(2)
2,n+1
...

a
(k−1)
k−1,n+1

a
(k)
k,n+1
...

a
(k)
n,n+1


. (2.4)

where xk−1 has been eliminated from Rk, . . . ,Rn.

In general the matrix entries are given by

a
(k)
ij =


a
(k−1)
ij if i = 1, 2, . . . , k − 1 and j = 1, 2, . . . , n+ 1,

0 if i = k, k + 1, . . . , n and j = 1, 2, . . . , k − 1,

a
(k−1)
ij − a

(k−1)
i,k−1

a
(k−1)
k−1,k−1

a
(k−1)
k−1,j if i = k, k + 1, . . . , n and j = k, k + 1, . . . , n+ 1.

This procedure will fail if any of the elements {a(i)ii } for i = 1, 2, . . . , n is zero as

Ri 7→ Ri −
a
(k)
i,k

a
(k)
k,k

Rk

cannot be performed or the backward substitution fails.

The system may still have solution but the technique might be altered. For example,
consider the augmented matrix

Ã = Ã(1) =


1 −1 2 −1
2 −2 3 −3
1 1 1 0
1 −1 4 3

∣∣∣∣∣∣∣∣
−8
−20
−2
4

 .

Performing the operations, R3 7→ R3 − R1, R4 7→ R4 − R1, and R2 7→ R2 − 2R1,

Ã = Ã(2) =


1 −1 2 −1
0 0 −1 −1
0 2 −1 1
0 0 2 4

∣∣∣∣∣∣∣∣
−8
−4
6
12

 .

Here a
(2)
22 is zero and is called the pivot element. Hence the procedure cannot proceed.

So we search the second column for first non-zero entry after 2nd row. Since, a
(2)
32 ̸= 0, we

perform R2 ↔ R3 and then proceed.

The above example shows what happens if a(k)kk = 0 for some k = 1, 2, . . . , n− 1. In this
case we follow:
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1. The kth column of Ã(k−1) is searched from the kth row to the nth row for first non zero
entry, a(k)pk ̸= 0 for k + 1 ≤ p ≤ n.

2. Then Rp ↔ Rk is performed to get a temporary matrix Ã(k−1)′ and then the usual
elimination follows.

In the case a
(k)
pk = 0 for each p, then the system does not have a unique solution as two

columns are the linearly dependent. Finally, if a(n)nn = 0 then the system does not have a unique
solution.

The algorithm for the Gaussian elimination is provided in Algorithm 6. Although the
algorithm looks like we are creating new matrices Ã(i) for i = 1, 2, . . . , n but we can perform
all the computation using only one n× (n+ 1) matrix for storage.

2.1.1 Computational Complexity

Now we look at the computational complexity of the Gaussian elimination. Generally time
taken to perform a multiplication or division is generally more than addition or subtraction.
Hence, we count these operations separately.

The arithmetic operations happens in Step 2.3:

1. Computation of mki: Requires division and (n− i) operations.

2. Multiplication of mkiRi: This multiplication happens with the non-zero entries of Ri

which is (n− i)× (n− i+ 1) as non zero entries is given by (n− i+ 1) in the Rth
i row.

3. Subtraction for Rk − mkiRi: These will also (n − i + 1) × (n − i) as we subtract the
non-zero entries.

The first two are multiplication and division and the last one is addition/subtraction.

Multiplication/Division Complexity

Now, (n− i) + (n− i)× (n− i + 1) = (n− i)× (n− i + 2) = (n− i)2 + 2(n− i). Summing i
from 1 to n− 1 we get

n−1∑
i=1

(n− i)(n− i+ 2) =
n−1∑
i=1

(n− i)2 + 2
n−1∑
i=1

(n− i)

=
n−1∑
i=1

i2 + 2
n−1∑
i=1

i

=
(n− 1)n(2n− 1)

6
+

2n(n− 1)

2
=

2n3 + 3n2 − 5n

6
.

In the above equation we have used the basic identities of summation, namely
∑n

i=1 i
2 and∑n

i=1 i.
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Algorithm 6 Gauss Elimination

Given: Matrix A, right hand side b and dimension n.
Find: Solution x.

Step 1:Create Augmented Matrix Ã
Initialize Ã as a zero matrix of size n× (n+ 1)
for i = 1 to n do

for j = 1 to n+ 1 do
if j ≤ n then

Ãij = Aij

else
Ãij = bi

end if
end for

end for

Step 2: Reduce the matrix to Row-Echelon form
for i = 1 to n− 1 do

Step 2.1: Check Pivot
Initialize p = −1
for q = i to n do

if Ãqi ̸= 0 then
p = q
break

end if
end for
if p = −1 then

Output(“No Unique Solution”)
exit()

end if

Step 2.2: Exchange Rows Ri ↔ Rp

if p ̸= i then
temp = 0
for j = 1 to n+ 1 do

temp = Ãij

Ãij = Ãpj

Ãpj = temp
end for

end if

Step 2.3: Matrix Reduction
mki = 0
for k = i+ 1 to n do

mki = Ãki/Ãii

for j = i to n+ 1 do
Ãkj = Ãkj −mkiÃij

end for
end for

end for

Step 3: Check for no Solution
if Ãnn = 0 then

Output(“No Unique Solution”)
exit()

end if

Step 4: Backward Substitution
Initialize x as a vector of size n

xn =
Ãn,n+1

Ãnn

for i = n− 1 to 1 do
sum = 0
for j = i+ 1 to n do

sum = sum + Ãijxj

end for
xi =

Ãi,n+1−sum

Ãii

end for

return {xi}ni=1
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Addition/Subtraction Complexity

n−1∑
i=1

(n− i)(n− i+ 1) =
n−1∑
i=1

(n− i)2 +
n−1∑
i=1

(n− i)

=
n−1∑
i=1

i2 +
n−1∑
i=1

i

=
n(n− 1)(2n− 1)

6
+

n(n− 1)

2
=

n3 − n

3
.

Hence we notice that in Step 2.3 we require O(n3) operations.

The next step that require arithmetic operations are the ones in backward substitution,
i.e, Step 4. First is in the computation of xn which requires one division. For the computation
of rest of the {xi} we need (n − i) multiplications and one division for each i and (n − i − 1)
addition for each summation followed by one subtraction.

Multiplication/Division Complexity

1 +
n−1∑
i=1

((n− i) + 1) = 1 +

(
n−1∑
i=1

(n− i)

)
+ n− 1

= n+
n−1∑
i=1

(n− i)

= n+
n−1∑
i=1

i

= n+
n(n− 1)

2
=

n2 + n

2
.

Addition/Subtraction Complexity

n−1∑
i=1

((n− i− 1) + 1) =
n−1∑
i=1

(n− i) =
n2 − n

2
.

Hence in total we require

2n3 + 3n2 − 5n

6
+

n2 + n

2
=

n3

3
+ n2 − n

3
,

operations for multiplication and division; and

n3 − n

3
+

n2 − n

2
=

2n3 + 3n2 − 5n

6
,

for addition and subtraction. Hence we have O(n3/3) computational complexity.
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2.1.2 Gauss-Jordan Algorithm

Wilhelm Jordan was a geodesist who extended the basic Gaussian elimination to achieve a full
row-reduced echelon form of a matrix. Do not confuse Wilhelm Jordan with Camille Jordan
(who gave us Jordan Curve theorem and Jordan Canonical form).

Figure 2.3: Wilhelm Jordan: 1 March 1842-17 April 1899.

This method is a variation of Gaussian elimination where the variable xi is not only
removed from Ri+1,Ri+2, . . . ,Rn but also from R1,R2, . . . ,Ri−1. Upon this reduction the aug-
mented matrix looks like

[A,b] =


a
(1)
11 0 . . . 0

0 a
(2)
22 . . . 0

...
... . . . ...

0 0 . . . a
(n)
nn

∣∣∣∣∣∣∣∣∣
a
(1)
1,n+1

a
(2)
2,n+1
...

a
(n)
n,n+1

 .

Then the solution can be easily obtained using

xi =
a
(i)
i,n+1

a
(i)
ii

, for i = 1, 2, . . . , n.

The Gauss-Jordan algorithm is presented in Algorithm 7.

2.2 Matrix Factorisation
Like polynomial interpolation, which was the basis for developing more efficient algorithms such
as Lagrange and Newton divided differences, Gaussian elimination is the foundation for more
advanced topics.

Gaussian elimination consists of two steps: the row-reduction step and backward sub-
stitution. The former has a computational complexity of O(n3), while the latter requires only
O(n2). This means that if we have a triangular matrix, solving the system requires only O(n2)
operations.

2.2.1 LU Decomposition

Suppose that we have A = LU, meaning that A has been factored into a lower triangular
matrix (L)2 and an upper triangular matrix (U)3. Then, solving Ax = b can be done in two

2Lower Triangular Matrix: A matrix A = {aij}ni,j=1 is said to be lower triangular if aij = 0 for i > j.
3Upper Triangular Matrix: A matrix A = {aij}ni,j=1 is said to be upper triangular if aij = 0 for j > i.
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Algorithm 7 Gauss Jordan

Given: Matrix A, right hand side b and dimension n.
Find: Solution x.

Step 1:Create Augmented Matrix Ã
Initialize Ã as a zero matrix of size n× (n+ 1)
for i = 1 to n do

for j = 1 to n+ 1 do
if j ≤ n then

Ãij = Aij

else
Ãij = bi

end if
end for

end for

Step 2: Reduce the matrix to Row-Echelon form
for i = 1 to n do

Step 2.1: Check Pivot
Initialize p = −1
for q = i to n do

if Ãqi ̸= 0 then
p = q
break

end if
end for
if p = −1 then

Output(“No Unique Solution”)
exit()

end if

Step 2.2: Exchange Rows Ri ↔ Rp

if p ̸= i then
temp = 0
for j = 1 to n+ 1 do

temp = Ãij

Ãij = Ãpj

Ãpj = temp
end for

end if

Step 2.3: Matrix Reduction
mki = 0
for k = 1 to n do

if k = i then
continue

else
mki = Ãki/Ãii

for j = i to n+ 1 do
Ãkj = Ãkj −mkiÃij

end for
end if

end for
end for

Step 3: Check for no Solution
if Ãnn = 0 then

Output(“No Unique Solution”)
exit()

end if

Step 4: Backward Substitution
Initialize x as a zero vector of size n
for i = 1 to n do

xi =
Ãi,n+1

Ãii

end for

return {xi}ni=1
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steps:

• Solve Ly = b for y.

• Solve Ux = y for x.

Both steps require only O(n2) operations.

Although several mathematicians introduced LU decomposition, the Polish mathemati-
cian Tadeusz Banachiewicz is credited with generalizing the method for arbitrary matrices.

Figure 2.4: Tadeusz Banachiewicz: 13 February 1882 - 17 November 1954.

LU decomposition reduces an O(n3/3) problem to an O(2n2) problem. This reduction
is useful but comes at a cost: the factorization of A into L and U itself requires O(n3/3)
operations. However, once computed, the factorization can be stored and reused for multiple
right-hand-side vectors b.

To proceed with LU decomposition, we assume that Ax = b can be solved using
Gaussian elimination without row pivoting, i.e., a(i)ii ̸= 0 for i = 1, 2, . . . , n.

The first step in Gaussian elimination consists of performing, for each j = 2, 3, . . . , n,

Rj 7→ Rj −mj1R1, where mj1 =
a
(1)
j1

a
(1)
11

.

An equivalent way of viewing this is by multiplying A on the left by the matrix M(1), where

M(1) =


1 0 · · · 0

−m21 1 · · · 0
...

... . . . ...
−mn1 0 · · · 1

 .

This is called the first Gaussian transformation matrix. The product of this matrix with A is
denoted by A(2), so that

A(2) = M(1)A.

Similarly, the right-hand side vector is updated as

b(2) = M(1)b.

Next, we construct M(2) by replacing the subdiagonal entries in the second column of the
identity matrix with the negative of the multipliers

mj2 =
a
(2)
j2

a
(2)
22

.
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This process continues until we obtain an upper triangular matrix A(n), given by

A(n) = M(n−1)M(n−2) · · ·M(1)A.

At this point, we define U = A(n) as the upper triangular matrix in the LU factorization.

To compute the lower triangular matrix L, we note that the inverse of each M(k) matrix
is given by

L(k) =
[
M(k)

]−1
=



1 0 · · · 0 0 · · · 0
0 1 · · · 0 0 · · · 0
...

... . . . ...
... . . . ...

0 0 · · · 1 0 · · · 0
0 0 · · · mk+1,k 1 · · · 0
...

... . . . ...
... . . . ...

0 0 · · · mn,k 0 · · · 1


.

The lower triangular matrix L is then obtained as

L = L(1)L(2) · · ·L(n−1).

Since each L(k) is the inverse of M(k), we confirm that

LU = A.

Theorem 2.1. (Doolittle LU Decomposition) If Gaussian elimination can be per-
formed on the system Ax = b without row interchanges, then the matrix A can be factored
as A = LU, where

mji =
a
(i)
ji

a
(i)
ii

,

and

U =


a
(1)
11 a

(1)
12 · · · a

(1)
1n

0 a
(2)
22 · · · a

(2)
2n

...
... . . . ...

0 0 · · · a
(n)
nn

 , L =


1 0 · · · 0

m21 1 · · · 0
...

... . . . ...
mn1 mn2 · · · 1

 .

The above factorization is the Doolittle method, where L has ones on its diagonal.
Alternatively, if the ones are placed on the diagonal of U, the technique is called Crout’s LU
decomposition.

Once the LU factorization is obtained, the system Ax = LUx is solved efficiently by
first computing y from Ly = b using forward substitution and then solving Ux = y using
backward substitution.

It is important to note that not all square matrices have an LU factorization. For
example, the matrix

A =

[
0 1
1 0

]
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has no LU factorization. Suppose it did; then there would exist L and U such that A = LU.
However, this would lead to a contradiction, as one of the factors would necessarily be singular
while A is not.

Next, we note that the LU decomposition is not unique.

Theorem 2.2. If a matrix has an LU decomposition, then it is not unique.

Proof. Let A have an LU decomposition, i.e., A = LU. Then, we can write

A = LU

= LDD−1U

= (LD)
(
D−1U

)
,

where D is any diagonal matrix. Since LD remains lower triangular and D−1U is still upper
triangular, we obtain infinitely many LU decompositions of A by varying D.

PLU Decomposition

So far, we have assumed that LU decomposition is applicable to systems of equations that do
not require pivoting. However, in general, pivoting is necessary. To introduce LU decomposition
with pivoting, we first define the permutation matrix.

Definition 2.3. A permutation matrix P = {pij}ni,j=1 is an n × n matrix obtained by
rearranging the rows of the identity matrix.

For example, the matrix

P =

1 0 0
0 0 1
0 1 0


is a 3× 3 permutation matrix where the second and third rows are interchanged. For any 3× 3
matrix A, multiplying by P on the left swaps these two rows:

PA =

1 0 0
0 0 1
0 1 0

a11 a12 a13
a21 a22 a23
a31 a32 a33

 =

a11 a12 a13
a31 a32 a33
a21 a22 a23

 .

Let k1, k2, . . . , kn be a permutation of 1, 2, . . . , n. The permutation matrix P is then
defined as:

pij =

{
1 if j = ki,
0 otherwise.

This satisfies the following properties:
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1. PA permutes the rows of A:

PA =


ak11 ak12 . . . ak1n
ak21 ak22 . . . ak2n

...
... . . . ...

akn1 akn2 . . . aknn

 .

2. The inverse of a permutation matrix exists and is given by P−1 = P⊤.

In the previous section, we saw that for any nonsingular matrix A, the linear system
Ax = b can be solved using Gaussian elimination with row interchanges. If the required
row interchanges are known beforehand, we can apply them initially, allowing us to use LU
decomposition without further row swaps. That is, for any nonsingular matrix A, there exists
a permutation matrix P such that the system

PAx = Pb

can be solved without row interchanges. Consequently, we can factorize PA as

PA = LU.

Since P is a permutation matrix, we have P−1 = P⊤, which implies

A =
(
P⊤L

)
U.

While U remains upper triangular, the matrix P⊤L may not necessarily be lower triangular
unless P = I.

Based on this, we establish the following lemma.

Lemma 2.4. Let A be an n×n matrix. Then, there exists a permutation matrix P such
that PA has an LU decomposition, i.e., PA = LU.

The next theorem addresses the uniqueness of the LU decomposition.

Theorem 2.5. Let A be an n×n matrix, and let P be an n×n permutation matrix such
that PA has an LU decomposition. If A is invertible, then there exists a unique n × n
lower triangular matrix L with all diagonal entries equal to 1, and a unique n× n upper
triangular matrix U such that

PA = LU.

Proof. The existence of the LU decomposition follows from Lemma 2.4. We now prove the
uniqueness.

Suppose L is not unit lower triangular. Then, we can express the decomposition as

PA = LU.
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Rewriting,
PA = LD−1DU,

where D is a diagonal matrix whose diagonal entries match those of L. Since A is invertible,
L is also invertible, ensuring that D−1 exists. Defining

L1 = LD−1, U1 = DU,

we obtain a new factorization with L1 as a unit lower triangular matrix and U1 as an upper
triangular matrix:

PA = L1U1.

Now, suppose there exists another decomposition:

PA = L2U2,

where L2 is also unit lower triangular. Then, we equate the two decompositions:

L1U1 = L2U2.

Since A is invertible, both L1 and P are invertible, implying that U1 = L−1
1 PA is also invertible.

Thus, we obtain
L−1

2 L1 = U2U
−1
1 . (2.5)

Since:

1. The inverse of a lower (upper) triangular matrix is lower (upper) triangular.

2. The product of lower (upper) triangular matrices remains lower (upper) triangular.

it follows that L−1
2 L1 is lower triangular, and U2U

−1
1 is upper triangular. Since L−1

2 L1 is also
unit diagonal, the only possibility is

L−1
2 L1 = I ⇒ L2 = L1.

Similarly, we obtain U1 = U2, proving uniqueness.

2.2.2 LDL⊤ Decomposition

In linear algebra we have certain special matrices and they enjoy certain “good” properties.
This is true with respect to their LU decomposition as well. We first mention certain matrices,
followed by their properties, and then their special kind of factorisation.

Definition 2.6. A matrix A is said to be diagonally dominant when

|aii| ≥
n∑

j=1,j ̸=i

|aij| ∀ i = 1, 2, . . . , n.

If the inequality is strict then it is called as strictly diagonally dominant.
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Algorithm 8 LU Decomposition with Partial Pivoting

Given: Matrix A of size n× n.
Find: Matrices L, U, and P such that PA = LU.

Step 1: Initialize Matrices
Initialize L as an n× n identity matrix.
Initialize P as an n× n identity matrix.
Initialize U as A.

Step 2: Perform LU Decomposition
for i = 1 to n− 1 do

Step 2.1: Check Pivot
Initialize p = −1
for q = i to n do

if Uqi ̸= 0 then
p = q
break

end if
end for
if p = −1 then

Output(“Matrix is singular but the LU decomposition still exists!”)
continue

end if

Step 2.2: Exchange Rows for P and U, Ri ↔ Rp

if p ̸= i then
temp1 = 0; temp2 = 0.
for j = 1 to n+ 1 do
temp1 = Pij; temp2 = Uij

Pij = Ppj; Aij = Apj.
Ppj = temp1; Apj = temp2.

end for
end if

Step 2.3: Matrix Reduction
for k = i+ 1 to n do
mki = Uki/Uii

Lki = mki

for j = i to n do
Ukj = Ukj −mkiUij

end for
end for

end for

return L,U,P
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Theorem 2.7. A strictly diagonally dominant matrix A is non-singular. Moreover, in
this case, Gaussian elimination can be performed on any linear system of the form Ax = b
to obtain it’s unique solution without row or column interchanges, and the computations
will be stable with respect to the growth of round-off errors.

Proof. This theorem has three parts:

1. Non-Singularity of A.

2. Unique solution using Gaussian Elimination and no row-interchange.

3. Stability of the solution.

We will prove the first two parts, as the proof of the third part is out of the scope of this lecture.
For the first part we use the method of contradiction. Suppose A is singular. Then the system
Ax = 0 has non-trivial solution, say x = {xi}. Let k be an index for which

0 < |xk| = max
1≤j≤n

|xj|.

As Ax = 0, we get
∑n

j=1 aijxj = 0 for i = 1, 2, . . . , n. At i = k

n∑
j=1

akjxj = 0 ⇒ akkxk = −
n∑

j=1,j ̸=k

akjxj.

From the triangular inequality we have

|akk||xk| =

∣∣∣∣∣
n∑

j=1,j ̸=k

akjxj

∣∣∣∣∣
≤

n∑
j=1,j ̸=k

|akj||xj|

<
n∑

j=1,j ̸=k

|akj||xk|

Hence, |akk| <
∑n

j=1,j ̸=k |akj| which is a contradiction as A is strictly diagonally dominant.
Hence the matrix A is singular.

For the second part we show that the matrices A(k) for k = 2, 3, . . . , n generated during
the Gaussian elimination is strictly diagonally dominant. Hence it ensure that each pivot
element is non-zero.

Since A is strictly diagonally dominant, a11 ̸= 0 and A(2) can be formed. Thus for each
i = 2, 3, . . . , n,

a
(2)
ij = a

(1)
ij −

a
(1)
1j a

(1)
i1

a
(1)
11

, for 2 ≤ j ≤ n.
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First, a(2)i1 = 0. Now using the triangle inequality

n∑
j=2,j ̸=i

|a(2)ij | =
n∑

j=2,j ̸=i

∣∣∣∣∣a(1)ij −
a
(1)
1j a

(1)
i1

a
(1)
11

∣∣∣∣∣ ≤
n∑

j=2,j ̸=i

|a(1)ij |+
n∑

j=2,j ̸=i

∣∣∣∣∣a
(1)
1j a

(1)
i1

a
(1)
11

∣∣∣∣∣.
But since A is strictly diagonally dominant,

n∑
j=1,j ̸=i

|a(1)ij | < |a(1)ii |

n∑
j=2,j ̸=i

|a(1)ij | < |a(1)ii | − |a(1)i1 |,

and similarly

n∑
j=1,j ̸=i

|a(1)1j | < |a(1)11 |

n∑
j=2,j ̸=i

|a(1)1j | < |a(1)11 | − |a(1)1i |,

so
n∑

j=2,j ̸=i

|a(2)ij | < |a(1)ii | − |a(1)i1 |+
|a(1)i1 |
|a(1)11 |

(
|a(1)11 | − |a(1)1i |

)
= |a(1)ii | −

|a(1)i1 ||a
(1)
1i |

|a(1)11 |
.

The reverse triangle inequality implies

|a(1)ii | −
|a(1)i1 ||a

(1)
1i |

|a(1)11 |
≤

∣∣∣∣∣a(1)ii − |a(1)i1 ||a
(1)
1i |

|a(1)11 |

∣∣∣∣∣ = |a(2)ii |,

which gives ∑
j=2,j ̸=i

|a(2)ij | < |a(2)ii |.

This establish the strict diagonal dominance for rows 2, . . . , n. But the first row of A(2) and A
are the same, so A(2) is strictly diagonally dominant.

We can continue this process inductively and see that the result holds.

Definition 2.8. A matrix A is said to be positive definite if x⊤Ax > 0 for all x ̸= 0. If
the matrix is symmetric then it is referred to as symmetric positive definite.

For the next few theorems and corollaries, we will not be presenting the proofs can be
found in Linear Algebra books. If you are interested, you can refer to [6].
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Theorem 2.9. (Necessary Conditions for Symmetric Positive Definite) If A is
a n× n symmetric positive definite matrix then

1. A has an inverse.
2. aii > 0 for each i = 1, 2, . . . , n.
3. max1≤k,j≤n |akj| ≤ max1≤i≤n |aii|
4. (aij)

2 < aiiajj for each i ̸= j.

These conditions are only necessary conditions. For sufficient and necessary condition
we introduce the notion of leading principal sub-matrix.

Definition 2.10. A leading principal sub-matrix of a matrix A is a matrix of the form

Ak =


a11 a12 · · · a1k
a21 a22 · · · a2k
...

... . . . ...
ak1 ak2 · · · akk

 ,

for some k = 1, 2, . . . , n.

Theorem 2.11. (Necessary and Sufficient Condition for Symmetric Positive
Definite) A symmetric matrix A is symmetric positive definite if and only if it’s leading
principal sub-matrices have a positive determinant.

Example: Consider the matrix

A =

 2 −1 0
−1 2 −1
0 −1 2

 .

It has three principal sub-matrix, A1,A2, and A3 each having determinants as 2, 3, and 4
respectively.

Theorem 2.12. A symmetric matrix A is symmetric positive definite if and only if
Gaussian elimination without row interchanges can be performed on the linear system
Ax = b with all positive pivot element. Moreover in this case, the computations are
stable with respect to the growth of round-off errors.

Again we are not interested in the proof of the above theorem but rather certain corol-
laries that come while proving this theorem.

Corollary 2.13. (LDL⊤ Factorisation) The matrix A is symmetric positive definite
if and only if A can be factored in the form LDL⊤ where L is a unit lower triangular
matrix and D is a diagonal matrix with positive diagonal entries.
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Corollary 2.2.2 has a counterpart in case we have A as a symmetric matrix.

Corollary 2.14. Let A be a symmetric matrix for which Gaussian elimination can be
applied without row interchange. Then A can be factored into LDL⊤, where L is lower
unit triangular matrix with ones on the diagonal and D is the diagonal matrix with
a
(1)
11 , a

(2)
22 , . . . , a

(n)
nn .

The algorithm to compute LDL⊤ is presented in Algorithm 9.

Algorithm 9 LDL⊤ Decomposition

Given: Symmetric matrix A of size n× n.
Find: Matrix L (with unit diagonal) and D such that A = LDLT .

Step 1: Initialize Matrices
Initialize L as an identity matrix of size n× n.
Initialize D as a zero matrix of size n× n.

Step 2: Compute D and L
D11 = A11

for i = 1 to n do

Step 2.1: Compute D
if i ̸= 1 then
sum = 0
for j = 1 to i− 1 do
sum = sum +DjjL

2
ij

end for
Dii = Aii − sum

end if

Step 2.2: Compute L
for j = i+ 1 to n do
sum = 0
if i ̸= 1 then

for k = 1 to i− 1 do
sum = sum +DkkLikLjk

end for
end if
Lji =

Aji−sum

Dii

end for
end for

return L,D

Algorithm 9 is based on the computation of individual entries of L and D. Let us take
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an example of how these entries actually look like or to be more precise how this algorithm is
created.

Example: Let A be a 3× 3 symmetric matrix having LDL⊤ decomposition. Then

A =

a11 a12 a13
a21 a22 a23
a31 a32 a33

 =

 1 0 0
ℓ21 1 0
ℓ31 ℓ32 1

d11 0 0
0 d22 0
0 0 d33

1 ℓ21 ℓ31
0 1 ℓ32
0 0 1


=

 d11 d11ℓ21 d11ℓ31
d11ℓ21 d22 + d11ℓ

2
21 d22ℓ

2
32 + d11ℓ21ℓ31

d11ℓ31 d22ℓ
2
32 + d11ℓ21ℓ31 d11ℓ

2
31 + d22ℓ

2
32 + d33

 .

We notice that d11 = a11 and ℓi1 = ai1/d11 for i = 2, 3. After this we can compute d22 and then
ℓ32. Finally we compute d33. Same process can be extended to a n× n matrix.

2.2.3 Cholesky Decomposition

From Theorem 2.12 we have another corollary related to symmetric positive definite matrix
which gives another decomposition.

Corollary 2.15. (Cholesky Decomposition) The matrix A is symmetric positive defi-
nite if and only if A can be factored in the form LL⊤ where L is a lower triangular matrix
with non-zero diagonal entries.

The Cholesky decomposition was discovered by André-Louis Cholesky who was a French
military officer (along with being a mathematician).

Figure 2.5: André-Louis Cholesky: 15 October 1875-31 August 1918.

The algorithm for the Cholesky decomposition can be found in Algorithm 10.
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Algorithm 10 Cholesky Decomposition

Given: Symmetric positive definite matrix A of size n× n.
Find: Matrices L such that A = LLT .

Step 1: Initialize Matrix
Initialize L as a zero matrix of size n× n.

Step 2: Compute L
L11 =

√
A11

for j = 2 to n do
Lj1 =

Aj1

L11

end for
for i = 2 to n do

Step 2.1: Compute Lii

sum = 0
for k = 1 to i− 1 do
sum = sum + L2

ik

end for
Lii =

√
Aii − sum

for j = i+ 1 to n do

Step 2.2: Compute Lji

sum = 0
for k = 1 to i− 1 do
sum = sum + LjkLik

end for
Lji =

1
Lii

(Aji − sum)
end for

end for

return L

Algorithm 10 is based on the computation of individual entries of L. Let us take an
example of how these entries actually looks like.

Example: Let A be a 3× 3 symmetric positive definite matrix having a LL⊤ decom-
position. Then

A =

a11 a12 a13
a21 a22 a23
a31 a32 a33

 =

ℓ11 0 0
ℓ21 ℓ22 0
ℓ31 ℓ32 ℓ33

ℓ11 ℓ21 ℓ31
0 ℓ22 ℓ32
0 0 ℓ33


=

 ℓ211 ℓ11ℓ21 ℓ11ℓ31
ℓ11ℓ21 ℓ221 + ℓ222 ℓ21ℓ31 + ℓ22ℓ32
ℓ11ℓ31 ℓ21ℓ31 + ℓ22ℓ32 ℓ231 + ℓ232 + ℓ233

 .
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We notice that ℓ11 =
√
a11 and ℓi1 = ai1/ℓ11 for i = 2, 3. After this we can compute ℓ22

and then ℓ32. Finally we compute ℓ33. Same process can be extended to a n× n matrix.

Until now we have not discussed about the computational complexity of any of the three
factorisation methods. Table 2.1 gives the applicability, computational complexity, and advan-
tages of the three factorisation methods. For brevity, we would not derive the computational
complexity for the methods but interested students can try it for their own.

Method Applicability Advantages Computational Complexity
M/D A/S

LU General square ma-
trices

Works for any matrix
but requires pivoting

n3

3 − n
3

n3

3 − n2

2 + n
6

LDL⊤ Symmetric matrices More stable than LU,
reduces storage, avoids
pivoting

n3

6 + n2 − 7n
6

n3

6 − n
6

Cholesky Symmetric positive
definite matrices

Fastest and most effi-
cient, lowest computa-
tion cost

n3

6 + n2

2 − 2n
3

n3

6 − n
6

Table 2.1: Applicability, Computational Complexity, and Advantages for LU, LDL⊤, and
Cholesky Decomposition. M/D: Multiplication and Division, A/S: Addition and Subtraction.

We notice that the Cholesky decomposition requires the least number of operations
while factorisation but it can be a little misleading as it requires extracting n square roots.
However the computation of square root is a linear factor of n and will decrease significantly
as n increases.

2.3 Iterative Methods

Root-finding methods are a class of iterative methods that we are aware of. In this part of the
chapter, we will translate these ideas into a system of equations. Before delving into iterative
methods for a system of equations, we need to find a way to measure the distance between n-
dimensional column vectors. This will help us determine the sequence of vectors that converge
to the solution of the system.

Definition 2.16. A vector norm on Rn is a function, ∥ · ∥ from Rn into R with the
following properties:

1. ∥x∥ ≥ 0 for all x ∈ Rn.
2. ∥x∥ = 0 if and only if x = 0.
3. ∥αx∥ = |α|∥x∥ for all α ∈ R and x ∈ Rn.
4. ∥x+ y∥ ≤ ∥x∥+ ∥y∥ for all x,y ∈ Rn.
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Definition 2.17. The ℓ2 and the ℓ∞ norm for the vector x = (x1, x2, . . . , xn) are defined
by

∥x∥22 =
n∑

i=1

x2
i and ∥x∥∞ = max

1≤i≤n
|xi|.

If we define a unit ball in R2 using these norms, then they are given by ∥x∥2 ≤ 1 which
is an unit disc centred at (0, 0) and ∥x∥∞ ≤ 1 which is a square.

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

x1

x
2

Unit Balls in ℓ2 and ℓ∞ Norms

ℓ2 norm
ℓ∞ norm

Figure 2.6: Unit balls in ℓ2 and ℓ∞ norm.

A fundamental property of these norms that is widely used is the Cauchy-Schwarz
inequality.

Theorem 2.18. (Cauchy-Schwarz Inequality) For each x = (x1, x2, . . . , xn)
⊤ and

y = (y1, y2, . . . , yn)
⊤ in Rn

x⊤y =
n∑

i=1

xiyi ≤

{
n∑

i=1

x2
i

}1/2{ n∑
i=1

y2i

}1/2

= ∥x∥2∥y∥2.

Proof. The result is immediate if x = 0 or y = 00. Suppose x ̸= 0 and y ̸= 0. Now, note that
for each λ ∈ R we have

0 ≤ ∥x− λy∥22 =
n∑

i=1

(xi − λyi)
2 =

n∑
i=1

x2
i − 2λ

n∑
i=1

xiyi + λ2

n∑
i=1

y2i ,

so that

2λ
n∑

i=1

xiyi ≤ ∥x∥22 + λ2∥y∥22.
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As, ∥x∥2 > 0 and ∥y∥2 > 0 so we let λ = ∥x∥2
∥y∥2 , which gives

2∥x∥2
∥y∥2

(
n∑

i=1

xiyi

)
≤ ∥x∥22 +

∥x∥22
∥y∥22

∥y∥22 = 2∥x∥22,

which, after simplification, gives us the result.

The norm of a vector measures the distance between an arbitrary vector and the zero
vector. We define the distance between two vectors as

∥x− y∥2 =

{
n∑

i=1

(xi − yi)
2

}1/2

and ∥x− y∥∞ = max
1≤i≤n

|xi − yi|.

Now, we define the convergence of a sequence of vectors in Rn.

Definition 2.19. A sequence {x(k)}∞k=1 of vectors in Rn is said to converge to x with
respect to ∥ · ∥ if given for any ε > 0 there exist a N(ε) such that

∥x(k) − x∥ < ε ∀k ≥ N(ε).

Next, we present the result regarding the equivalence of norms.

Theorem 2.20. For each x ∈ Rn

∥x∥∞ ≤ ∥x∥2 ≤
√
n∥x∥∞.

Proof. Let xj be the coordinate such that ∥x∥∞ = |xj| = max1≤i≤n |xi|.

Now,

∥x∥2∞ = |xj|2 = x2
j ≤

n∑
i=1

x2
i = ∥x∥22.

Similarly,

∥x∥22 =
n∑

i=1

x2
i ≤

n∑
i=1

x2
j ≤ x2

jn ≤ ∥x∥2∞n.

Hence, ∥x∥2 ≤
√
n∥x∥∞.

Similar to vector norms, we also have matrix norms. The measure given to a matrix
under a natural norm describes how the matrix stretches unit vectors relative to that norm.
The maximum stretch is the norm of the matrix. The definition of the matrix norm is similar
to that of the vector norm.
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Theorem 2.21. If ∥ · ∥ is a vector norm in Rn, then

∥A∥ = max
∥x∥=1

∥Ax∥

is a matrix norm.

Note that we have an abuse of notation here; we denote ∥ · ∥ to show both the vector
and the matrix norm.

Matrix norms defined by vector norms are called natural or induced matrix norm. We
can also write the natural matrix norms as

∥A∥ = max
y ̸=0

∥Ay∥
∥y∥

,

as y/∥y∥ is a unit vector.

Corollary 2.22. For any vector y ̸= 0, matrix A and any natural norm ∥ · ∥, we have

∥Ay∥ ≤ ∥A∥ · ∥y∥.

The matrix norm that we consider are the ∞ norm, i.e.,∥A∥∞ = max∥x∥∞=1 ∥Ax∥∞
and the ℓ2 norm, i.e., ∥A∥∞ = max∥x∥2=1 ∥Ax∥2.

Lastly, we define the ∥ · ∥∞ norm of a matrix.

Theorem 2.23. If A = {aij}ni,j=1 is a n× n matrix then

∥A∥∞ = max
1≤i≤n

n∑
j=1

|aij|.

A square matrix A takes the set of n-dimensional vectors into itself, which gives a linear
function from Rn to Rn. After this transformation, certain vectors might be parallel to the
original vector, i.e., x is parallel to Ax. It might be stretched, shrinked,or remains unchanged.
The magnitude with which it stretches or shrinked is called the eigen or characteristic value.
But why do we care about these eigenvalues? There is a close relation between these eigenvalues
and the convergence of the iterative methods.

Definition 2.24. If A is a square matrix, then the characteristic polynomial of A is
defined by

p(λ) = det (A− λI) .
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Definition 2.25. If p(λ) is the characteristic polynomial of the matrix A, the zeros of
p are eigenvalues or characteristic values of the matrix A. If λ is an eigenvalue of A
and x ̸= 0 satisfies (A− λI)x = 0 then x is an eigenvector or characteristic vector of A
corresponding the λ.

Note that if x is an eigenvector of A associated with λ and α ∈ R \ {0} then αx is an
eigenvector since

A(αx) = α(Ax) = α(λx) = λ(αx).

As an immediate consequence of this is x is an eigenvector then we can choose α = ±∥x∥−1,
which would make αx an eigenvector with norm one. So far any eigenvalue and any vector
norm we have eigenvectors with norm one.

Definition 2.26. The spectral radius ρ(A) of a matrix is defined by

ρ(A) = max{|λ|},

where λ is an eigenvalue of A. For λ(:= α + iβ) ∈ C, |λ| = (α2 + β2)
1/2.

Next, we have a relation between the spectral radius and the matrix norm.

Theorem 2.27. If A is a n× n matrix then:
1. ∥A∥2 =

[
ρ
(
A⊤A

)]1/2.
2. ρ(A) ≤ ∥A∥, for any natural norm ∥ · ∥.

If A is symmetric then ∥A∥2 = ρ(A). Apart from spectral radius, another important
property to study is how a matrix’s power behaves.

Definition 2.28. We call n× n matrix A convergent if

lim
k→∞

(
Ak
)
ij
= 0 ∀ i = 1, 2, . . . , n and j = 1, 2, . . . , n.

Now, convergent matrices have a special connection with the spectral radius.

Theorem 2.29. The following statements are equivalent:
1. A is a convergent matrix.
2. limn→∞ ∥An∥ = 0 for some natural norm.
3. limn→∞ ∥An∥ = 0 for all natural norms.
4. ρ(A) < 1.
5. limn→∞Anx = 0 for all x.
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2.3.1 Jacobi Method

After having a quick glance at the basics of linear algebra, we move back toward the domain
of numerical analysis.

An iterative technique to solve the n × n linear system Ax = b starts with an initial
approximation x(0) to the solution x and generates a sequence of vectors {x(k)}∞k=0 such that
x(k) → x as k → ∞.

Carl Gustav Jacob Jacobi was a German mathematician who proposed the Jacobi
eigenvalue algorithm, an iterative method for calculating the eigenvalues and eigenvectors of a
real symmetric matrix. The Jacobi method that we study is the stripped-down version of this
algorithm only.

Figure 2.7: Carl Gustav Jacob Jacobi: 10 December 1804-18 February 1851

The Jacobi iterative method is obtained by solving the ith equation in Ax = b for xi

to obtain

xi =
n∑

j=1,j ̸=i

(
−aijxj

aii

)
+

bi
aii

for i = 1, 2, . . . , n. (2.6)

For each k ≥ 1 we generate the components x
(k)
i of x(k) from the components of x(k−1)

by

x
(k)
i =

1

aii

[
n∑

j=1,j ̸=i

(
−aijx

(k−1)
j

)
+ bi

]
for i = 1, 2, . . . , n. (2.7)

Example: Say we have the system of equations of the form

a11x1 + a12x2 + · · ·+ a1nxn = b1

a21x1 + a22x2 + · · ·+ a2nxn = b2
...

an1x1 + an2x2 + · · ·+ annxn = bn.
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Suppose x(0) is the initial iterate, then the first iterative solution is given by

x
(1)
1 =

1

a11

(
b1 −

(
a12x

(0)
2 + · · ·+ a1nx

(0)
n

))
x
(1)
2 =

1

a22

(
b2 −

(
a21x

(0)
1 + · · ·+ a2nx

(0)
n

))
...

x(1)
n =

1

ann

(
bn −

(
an1x

(0)
1 + · · ·+ an,n−1x

(0)
n−1

))
,

and similarly, we compute for k ≥ 1.

In general, iterative techniques for solving linear systems of equations involve a process
that converts Ax = b into an equivalent system x = Tx+c for some fixed-matrix T and vector
c. Once the initial approximation is selected say x(0) we get

x(k) = Tx(k−1) + c for each k = 1, 2, . . . .

We can have an equivalent formulation for the Jacobi method by splitting A as

A = D− L−U,

where L is strict lower triangular part of A, U is the strict upper triangular part of A, and D
is the diagonal. Say,

A =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

... . . . ...
an1 an2 · · · ann

 .

Then,

D =


a11 0 · · · 0
0 a22 · · · 0
...

... . . . ...
0 0 · · · ann

 , L =


0 0 · · · 0

−a21 0 · · · 0
...

... . . . ...
−an1 −an2 · · · 0

 , and U =


0 −a12 · · · −a1n
0 0 · · · −a2n
...

... . . . ...
0 0 · · · 0

 .

Then we can re-write Ax = b as

Dx = (L+U)x+ b,

and if D−1 exist, x = D−1 (L+U)x+D−1b.

Then, the Jacobi iterative is given by

x(k) = D−1 (L+U)x(k−1) +D−1b for k ≥ 1. (2.8)

Denoting TJ = D−1 (L+U) and cJ = D−1b then we get the Jacobi iteration as

x(k) = TJx
(k−1) + cJ for k ≥ 1. (2.9)

We need aii ̸= 0 for each i = 1, 2, . . . , n. If one of the aii = 0 and the system is not
singular, then the equations can be reordered so that no aii is zero.
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The algorithm for the Jacobi method is provided in Algorithm 11.

Algorithm 11 Jacobi Iteration

Given: Matrix A with non-zero pivots, right hand side b, dimension n,
max_iterations, and tolerance.

Find: Solution x.

Step 1: Jacobi Iterations
Initialize xold = 0
for k = 1 to max_iterations do

for i = 1 to n do
sum = bi

for j = 1 to n do
if j ̸= i then
sum = sum−Aijx

old
j

end if
end for
xi =

sum
Aii

end for
Error = ∥x− xold∥∞
if Error < tolerance then

Output(“Convergence reached”)
break

end if
xold = x

end for
if k == max_iterations then

Output(“Maximum Number of iterations reached”)
end if

return x

2.3.2 Gauss-Seidel Method

In the Jacobi method we require all the components of x(k−1) are used to compute the com-
ponents x

(k)
i of x(k). But, for i > 1, the component x

(k)
1 , . . . , x

(k)
i−1 of x(k) have already being

computed. If we use these values, then it is expected to give better approximations to the
actual solutions than x

(k−1)
1 , . . . , x

(k−1)
i−1 .

Then, it is reasonable to compute x
(k)
i using the most recently calculated values.

x
(k)
i =

1

aii

[
−

i−1∑
j=1

aijx
(k)
j −

n∑
j=i+1

aijx
(k−1)
j + bi

]
, (2.10)

for i = 1, 2, . . . , n. This is called the Gauss Seidel method . Gauss initially developed the
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concept in the mid-1820s; it was only published and fully detailed by Seidel in 1874 through a
private letter from Gauss to his student Gerling, making the method primarily attributed to
both mathematicians.

Figure 2.8: Philipp Ludwig von Seidel: 24 October 1821-13 August 1896

Example: Say we have the system of equations of the form

a11x1 + a12x2 + · · ·+ a1nxn = b1

a21x1 + a22x2 + · · ·+ a2nxn = b2
...

an1x1 + an2x2 + · · ·+ annxn = bn.

Suppose x(0) is the initial iterate, then the first iterative solution is given by

x
(1)
1 =

1

a11

(
b1 −

(
a12x

(0)
2 + a13x

(0)
3 + · · ·+ a1nx

(0)
n

))
x
(1)
2 =

1

a22

(
b2 −

(
a21x

(1)
1 + a23x

(0)
3 + · · ·+ a2nx

(0)
n

))
...

x(1)
n =

1

ann

(
bn −

(
an1x

(1)
1 + an2x

(1)
2 + · · ·+ an,n−1x

(1)
n−1

))
,

and similarly, we compute for k ≥ 1.

To write the Gauss-Seidel method in matrix form, we multiply Eq. (2.10) with aii and
collect the kth iterate term to get

ai1x
(k)
1 + ai2x

(k)
2 + · · ·+ aiix

(k)
i = −ai,i+1x

(k−1)
i+1 − · · · − ainx

(k−1)
n + bi,

for i = 1, 2, . . . , n. Then

a11x
(k)
1 = −a12x

(k−1)
2 − a13x

(k−1)
3 − · · · − a1nx

(k−1)
n + b1,

a21x
(k)
1 + a22x

(k)
2 = − a23x

(k−1)
3 − · · · − a2nx

(k−1)
n + b2,

...

an1x
(k)
1 + an2x

(k)
2 + · · ·+ annx

(k)
n = bn.
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Then, we can write this system as

(D− L)x(k) = Ux(k−1) + b,

and x(k) = (D− L)−1Ux(k−1) + (D− L)−1 b for k ≥ 1, where D,L, and U are defined in the
same way as Jacobi method. Then denoting TGS = (D− L)−1U and cGS = (D− L)−1 b we
get the Gauss-Seidel method as

x(k) = TGSx
(k−1) + cGS.

Now, D− L is non singular if and only if aii ̸= 0 for all i = 1, 2, . . . , n.

It appears that the Gauss-Seidel method is always a better approximation to the Jacobi
method, which is “mostly” true, but we have cases where this might not hold.

The algorithm for the Gauss-Seidel method is provided in Algorithm 12.

Algorithm 12 Gauss-Seidel Iteration

Given: Matrix A with non-zero pivots, right hand side b, dimension n,
max_iterations, and tolerance.

Find: Solution x.

Step 1: Gauss-Seidel Iterations
Initialize xold = 0
for k = 1 to max_iterations do

for i = 1 to n do
sum = bi

for j = 1 to n do
if j < i then
sum = sum−Aijxj

else if i < j then
sum = sum−Aijx

old
j

end if
end for
xi =

sum
Aii

end for
Error = ∥x− xold∥∞
if Error < tolerance then

Output(“Convergence reached”)
break

end if
xold = x

end for
if k == max_iterations then

Output(“Maximum Number of iterations reached”)
end if

return x
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General Iteration Matrices

We need to analyze the formula

x(k) = Tx(k−1) + c for k ≥ 1,

to study the convergence of general iteration techniques where x(0) is arbitrary.

Lemma 2.30. If the spectral radius ρ(T) < 1 then (I−T)−1 exists, and

(I−T)−1 = I+T+T2 + · · · =
∞∑
j=0

Tj.

Proof. Now, let λ be an eigenvalue of T with eigenvector x then

Tx = λx ⇐⇒ (I−T)x = (1− λ)x.

Hence, λ is an eigenvalue of T if and only if 1− λ is a eigenvalue of I−T.

However, by the definition of spectral radius |λ| ≤ ρ(T) < 1, so λ = 1 is not an
eigenvalue of T which implies 0 is not an eigenvalue of I−T.

Hence, I−T is invertible. Let Sm = I+T+T2 + · · ·+Tm, then

(I−T)Sm = I+T+T2 + · · ·+Tm −T−T2 − · · · −Tm+1 = I−Tm+1.

As ρ(T) < 1 then by Theorem 2.29 we have T is convergent. Again using Theorem 2.29 we get

lim
m→∞

(I−T)Sm = lim
m→∞

(I−Tm+1) = I.

Thus

(I−T)−1 = lim
m→∞

Sm =
∞∑
j=0

Tj.

Theorem 2.31. For any x(0) ∈ Rn the sequence {x(k)}∞k=0 defined by

x(k) = Tx(k−1) + c for each k ≥ 1,

converges to the unique solution x = Tx+ c if and only if ρ(T) < 1.

Proof. Let ρ(T) < 1. Then

x(k) = Tx(k−1) + c

= T
(
Tx(k−2) + c

)
+ c

= T2x(k−2) +Tc+ c
...
= Tkx(0) +

(
Tk−1 + · · ·+ I

)
c. (2.11)
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As ρ(T) < 1 from Theorem 2.29 we get that T is convergent and limk→∞Tkx(0) = 0.

In Eq. (2.11) passing the limit of k → ∞, and then using the previous lemma, we get,

lim
k→∞

x(k) = lim
k→∞

T(k)x(0) +

(
∞∑
j=0

Tj

)
c = 0+ (I−T)−1 c.

Hence, {x(k)} → x as k → ∞ and x = Tx+ c is the unique limit.

Conversely we will show that for any y ∈ Rn we have limk→∞Tky = 0 which is
equivalent to ρ(T) < 1.

Let y ∈ Rn be arbitrary and x be the unique solution to x = Tx+c. Define x(0) = x−y
and for k ≥ 1

x(k) = Tx(k−1) + c.

Now, by the hypothesis {x(k)} → x. Also,

x− x(k) = (Tx+ c)−
(
Tx(k−1) + c

)
= T(x− x(k−1)).

Inductively x− x(k) = T
(
x− x(k−1)

)
= T2

(
x− x(k−2)

)
= · · · = Tk

(
x− x(0)

)
= Tky. Hence,

limk→∞Tky = limk→∞ Tk
(
x− x(0)

)
= limk→∞

(
x− x(k)

)
= 0.

As y ∈ Rn was arbitrary. By Theorem 2.29 we get that ρ(T) < 1.

Based on this theorem, a nice corollary bounds the error.

Corollary 2.32. If ∥T∥ < 1 for any natural norm and c is a given vector, then the
sequence {x(k)}∞k=0 defined by x(k) = Tx(k−1)+c converges, for any x(0) ∈ Rn, to a vector
x ∈ Rn such that x = Tx+ c. Furthermore, the following error bounds hold:

1. ∥x− x(k)∥ ≤ ∥T∥k∥x(0) − x∥.
2. ∥x− x(k)∥ ≤ ∥T∥k

1−∥T∥∥x
(1) − x(0)∥.

Proof. Let ∥T∥ < 1. By Theorem 2.27, we have ρ(T) < 1. Therefore, the method converges to
the solution x = Tx+ c by the previous theorem. We now prove the error bounds.

Starting from the iterative formula x(k) = Tx(k−1) + c, we subtract x = Tx + c from
both sides and taking the norm:

∥x(k) − x∥ = ∥Tx(k−1) + c−Tx− c∥
= ∥T(x(k−1) − x)∥
≤ ∥T∥ · ∥x(k−1) − x∥.

Applying this inequality recursively:

∥x(k) − x∥ ≤ ∥T∥ · ∥x(k−1) − x∥
≤ ∥T∥2 · ∥x(k−2) − x∥
...
≤ ∥T∥k · ∥x(0) − x∥.
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This proves the first error bound.

For the second error bound, consider the norm of the difference between successive
iterates:

∥x(k) − x(k−1)∥ = ∥T(x(k−1) − x(k−2))∥ ≤ ∥T∥ · ∥x(k−1) − x(k−2)∥.

Applying this inequality recursively:

∥x(k) − x(k−1)∥ ≤ ∥T∥k−1 · ∥x(1) − x(0)∥.

For m > k ≥ 1, we have:

∥x(m) − x(k)∥ = ∥x(m) − x(m−1) + x(m−1) − · · ·+ x(k+1) − x(k)∥
≤ ∥x(m) − x(m−1)∥+ ∥x(m−1) − x(m−2)∥+ · · ·+ ∥x(k+1) − x(k)∥
≤ ∥T∥m−1 · ∥x(1) − x(0)∥+ ∥T∥m−2 · ∥x(1) − x(0)∥+ · · ·+ ∥T∥k · ∥x(1) − x(0)∥.

Factoring out ∥x(1) − x(0)∥:

∥x(m) − x(k)∥ ≤ ∥T∥k · ∥x(1) − x(0)∥
(
1 + ∥T∥+ · · ·+ ∥T∥m−k−1

)
.

Taking the limit as m → ∞:

lim
m→∞

∥x(m) − x(k)∥ ≤ ∥T∥k · ∥x(1) − x(0)∥
∞∑
i=0

∥T∥i.

Since ∥T∥ < 1, we have:

∞∑
i=0

∥T∥i = 1

1− ∥T∥
.

Thus:

lim
m→∞

∥x(m) − x(k)∥ ≤ ∥T∥k

1− ∥T∥
· ∥x(1) − x(0)∥.

Since limm→∞ x(m) = x, the second error bound follows.

Hence, if ρ(TJ) and ρ(TGS) < 1 then we get the convergence of these schemes. We also
note from this corollary that the convergence of the method is based on ∥T∥k. Now according
to Theorem 2.27 we have ρ(T) ≤ ∥T∥. We have a more general result, i.e., for given ε > 0,
ρ(T) ≤ ∥T∥ ≤ ρ(T) + ε. Hence, we can say that

∥x(k) − x∥ ≈ ρ(T)k∥x− x(0)∥.

Thus, we would like to select methods with minimal ρ(T).

We have a sufficient method to show the convergence of the Jacobi and the Gauss-Seidel
method.
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Theorem 2.33. If A is strictly diagonally dominant then for any choice of x(0) both the
Jacobi and the Gauss-Seidel methods give sequences {x(k)}∞k=0 that converge to the unique
solution of Ax = b.

There is no best method in general between the Gauss-Seidel and the Jacobi method.
However, in exceptional cases, we have some results.

Theorem 2.34. If aij ≤ 0 for each i ̸= j and aii > 0 for each i = 1, 2, . . . , n, then one
and only one of the following statement holds:

1. 0 ≤ ρ(TGS) < ρ(TJ) < 1,
2. 1 < ρ(TJ) < ρ(TGS),
3. ρ(TJ) = ρ(TGS) = 0,
4. ρ(TJ) = ρ(TGS) = 1.

In the above theorem, we note that if 1. holds, then both methods converge together
with TGS being better, and if 2. holds, then both diverge and TGS has “better” divergence.

2.3.3 Successive Over Relaxation

Definition 2.35. Suppose x̃ ∈ Rn is an approximation to the solution of the linear
system defined by Ax = b. The residual vector for x̃ with respect to the system is
r = b−Ax̃.

In procedure such as Jacobi or Gauss-Seidel method, a residual vector is associated
with each calculation of an approximate component to the solution. The true objective of an
iterative method is to generate a sequence of approximation that allows the residual vector to
converge rapidly to zero. Suppose

r
(k)
i =

(
r
(k)
1i , r

(k)
2i , . . . , r

(k)
ni

)⊤
,

denote the residual vector for the Gauss-Seidel method corresponding to the approximate so-
lution vector x

(k)
i which is defined by

x
(k)
i =

(
x
(k)
1 , x

(k)
2 , . . . , x

(k)
i−1, x

(k−1)
i , . . . , x(k−1)

n

)⊤
.

Now, the mth component of r(k)i is

r
(k)
mi = bm −

i−1∑
j=1

amjx
(k)
j −

n∑
j=i

amjx
(k−1)
j , (2.12)

or equivalently

r
(k)
mi = bm −

i−1∑
j=1

amjx
(k)
j −

n∑
j=i+1

amjx
(k−1)
j − amix

(k−1)
i ,

for each m = 1, 2, . . . , n.
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In particular for m = i

r
(k)
ii = bi −

i−1∑
j=1

aijx
(k)
j −

n∑
j=i+1

aijx
(k−1)
j − aiix

(k−1)
i ,

which is equivalent to

aiix
(k−1)
i + r

(k)
ii = bi −

i−1∑
j=1

aijx
(k)
j −

n∑
j=i+1

aijx
(k−1)
j . (2.13)

However, we know from the Gauss Seidel method that

x
(k)
i =

1

aii

[
bi −

i−1∑
j=1

aijx
(k)
j −

n∑
j=i+1

aijx
(k−1)
j

]
. (2.14)

So we can write Eq. (2.13) as
aiix

(k−1)
i + r

(k)
ii = aiix

(k)
i .

Consequently the Gauss Seidel method can be characterised as choosing x
(k)
i to satisfy

x
(k)
i = x

(k−1)
i +

r
(k)
ii

aii
. (2.15)

Hence the update is determined by the residual at the current step.

Now let us look at the residual vector r(k)i+1 associated with x
(k)
(i+1) =

(
x
(k)
1 , x

(k)
2 , . . . , x

(k−1)
i+1 , . . . , x

(k−1)
n

)⊤
.

By Eq. (2.12) the ith component of r(k)i+1 is

r
(k)
i,i+1 = bi −

i∑
j=1

aijx
(k)
j −

n∑
j=i+1

aijx
(k−1)
j

= bi −
i−1∑
j=1

aijx
(k)
j −

n∑
j=i+1

aijx
(k−1)
j − aiix

(k)
i .

By Eq. (2.14) we notice that the RHS is zero. In a way x
(k)
i+1 is chosen such that the ith

component of r(k)i+1 is zero. But here only one component is zero which may not be the most
efficient way to reduce the norm of the vector r

(k)
i+1. Hence if we modify Eq. (2.15) to

x
(k)
i = x

(k−1)
i + ω

r
(k)
ii

aii
, (2.16)

then for certain values of ω we can reduce the norm of the residual. Eq. (2.16) refers to
relaxation methods . If ω ∈ (0, 1) we get under relaxation method and if ω > 1 we get over
relaxation methods . Generally we refer to them as successive over relaxation (SOR) methods .

The idea of the SOR methods were devised simultaneously by Stan Frankel and David
M. Young Jr. in the 1950s but the idea of the relaxation methods can be traced back way
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Figure 2.9: Stan Frankel (1919 – May 1978, left) and David M. Young Jr. (20 October 1923 –
21 December 2008, right).

earlier. Interestingly, Frankel was also a part of the Manhattan project and was a PostDoc
under Oppenheimer.

We first reformulate the SOR method. By Eq. (2.16)

x
(k)
i = (1− ω)x

(k−1)
i +

ω

aii

[
bi −

i−1∑
j=1

aijx
(k)
j −

n∑
j=i+1

aijx
(k−1)
j

]

which is aiix
(k)
i +ω

∑i−1
j=1 aijx

k
j = (1−ω)aiix

(k−1)
i −ω

∑n
j=i+1 aijx

(k−1)
j +ωbi. So in vectorise form

this is
(D− ωL)x(k) = [(1− ω)D+ ωU]x(k−1) + ωb,

i.e.,
x(k) = (D− ωL)−1 [(1− ω)D+ ωU]x(k−1) + ω (D− ωL)−1 b.

Letting Tω = (D− ωL)−1 [(1− ω)D+ ωU] and cω = ω (D− ωL)−1 b we get the SOR method
as

x(k) = Tωx
(k−1) + cω. (2.17)

Now, the next big question is what should be the appropriate value of ω. In general for n× n
system we cannot say it but for particular cases we have the answer.

Theorem 2.36. If aii ̸= 0 for all i = 1, 2, . . . , n then ρ (Tω) ≥ |ω− 1|. This means SOR
can only converge if 0 < ω < 2.

Proof. Let {λi}ni=1 be the eigenvalues of Tω. Then

ρ(Tω)
n ≥

n∏
i=1

λi = det(Tω)

= det
(
(D− ωL)−1 [(1− ω)D+ ωU]

)
= det (D− ωL)−1 det ((1− ω)D+ ωU)

= det(D−1)det ((1− ω)D)

=
1∏n

i=1 aii
(1− ω)n

n∏
i=1

aii = (1− ω)n.

Now, ρ (Tω) = max1≤i≤n |λi| ≥ |1 − ω|. Now the method will converge if ρ (Tω) < 1. Hence
ω ∈ (0, 2).
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Next, we present a theorem regarding the convergence of the SOR method for symmetric
positive definite matrices.

Theorem 2.37. If A is symmetric positive definite matrix and ω ∈ (0, 2) then the SOR
method converges for any choice of initial approximation.

Theorem 2.38. If A is symmetric positive definite and tridiagonal, then ρ (TGS) =
[ρ (TJ)]

2 < 1 and the optimal choice of ω for the SOR method is

ω =
2

1 +
√
1− [ρ (TJ)]

2
,

with this choice of ω we have ρ (Tω) = ω − 1.

The SOR algorithm is presented in Algorithm 13.

2.3.4 Condition Number

When solving systems of linear equations, either using iterative solvers or direct solvers, nu-
merical errors are inevitable. In iterative solvers, errors can accumulate due to finite precision
and approximation, while in direct solvers, round-off errors from finite precision arithmetic can
also affect the solution.

Consider the system of linear equations

Ax = b,

where A is an invertible matrix. Suppose we introduce a small perturbation δb to the right-
hand side b, resulting in a perturbed solution x+ δx. The perturbed system is given by:

A (x+ δx) = b+ δb.

Expanding this and subtracting the original system Ax = b yields:

Aδx = δb.

Since A is invertible, we can solve for δx as:

δx = A−1δb.

Taking the norm of both sides, we have:

∥δx∥ = ∥A−1δb∥ ≤ ∥A−1∥ · ∥δb∥.

Dividing both sides by ∥x∥, we obtain the bound on the relative error in the solution:

∥δx∥
∥x∥

≤ ∥A−1∥
∥x∥

· ∥δb∥.
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Algorithm 13 SOR Iteration

Given: Matrix A with non-zero pivots, right hand side b, dimension n, ω,
max_iterations, and tolerance.

Find: Solution x.

Step 1: SOR Iterations
Initialize xold = 0
for k = 1 to max_iterations do

for i = 1 to n do
sum = bi

for j = 1 to n do
if j < i then
sum = sum−Aijxj

else if i < j then
sum = sum−Aijx

old
j

end if
end for
xi = (1− ω)xold

i + ω sum
Aii

end for
Error = ∥x− xold∥∞
if Error < tolerance then

Output(“Convergence reached”)
break

end if
xold = x

end for
if k == max_iterations then

Output(“Maximum Number of iterations reached”)
end if

return x

Since Ax = b, we know that:

∥b∥ ≤ ∥A∥ · ∥x∥.

Using this relationship, we can rewrite the relative error as:

∥δx∥
∥x∥

≤ ∥A∥ · ∥A−1∥ · ∥δb∥
∥b∥

.

This inequality shows that the relative error in the solution is bounded by the relative
error in the right-hand side, scaled by the factor ∥A∥ · ∥A−1∥. We define the condition number
of the matrix A as:

κ(A) = ∥A∥ · ∥A−1∥.
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The condition number κ(A) provides a measure of how sensitive the solution x is to
perturbations in b. Specifically: - If κ(A) ≈ 1, the system is said to be well-conditioned,
meaning small perturbations in b lead to small errors in x. - If κ(A) is large, the system is
ill-conditioned, and even small perturbations in b may cause large errors in x.

Preconditioners

To reduce the condition number and improve numerical stability, we can use a technique called
preconditioning . Preconditioning involves transforming the system Ax = b by multiplying
both sides with a matrix P to obtain an equivalent system with a lower condition number.
There are two common types of preconditioning:

1. Left Preconditioning: Multiply both sides of the system by P−1:

P−1Ax = P−1b.

2. Right Preconditioning: Solve the system:

AP−1y = b, where x = P−1y.

A good preconditioner P should satisfy two key properties:

1. The convergence of the iterative method applied to the preconditioned system P−1A or
AP−1 should be faster than for the original system.

2. Solving the system involving P should be computationally inexpensive.

In practice, a balance must be struck between these two requirements.

Some commonly used preconditioners are:

1. Jacobi (Diagonal) Preconditioner: P = D, where D is the diagonal part of A.

2. Forward Gauss-Seidel Preconditioner: P = D + L, where L is the strict lower
triangular part of A.

3. Backward Gauss-Seidel Preconditioner: P = D + U, where U is the strict upper
triangular part of A.

4. Symmetric Gauss-Seidel Preconditioner: P = (D+ L)D−1(D+U).

For convenience, we often denote the preconditioner by P−1 rather than P. Precondi-
tioning is a powerful tool in improving the stability and performance of numerical solvers, and
iterative methods are often used in conjunction with preconditioners rather than as standalone
solvers.

2.4 Least Square Methods
Least Square Problems has been quite helpful in different science areas, from physics to data
science. In simple language, i.e., the mathematical language, we are trying to solve an overde-
termined system, i.e., Ax = b, by minimizing the ℓ2 norm of the residual.
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Consider a linear system of equation Ax = b with n unknowns and m equations with
m > n, i.e.,

A =


a11 · · · a1n
a21 · · · a2n
... . . . ...

am1 · · · amn

 , and b =


b1
b2
...
bm

 .

Hence we need to compute x ∈ Rn such that Ax = b with A ∈ Rm×n and b ∈ Rm. A direct
solution to such a problem does not exist as the invertibility of the matrix is in question. Hence,
instead, we try to reduce the residual r given by

r = b−Ax ∈ Rm.

What do we mean by reduction? If we choose the ℓ2 norm then the problem is: Given A ∈
Rm×n, m ≥ n and b ∈ Rm, find x ∈ Rn such that ∥b−Ax∥2 is minimized.

The choice of ℓ2 norm can be justified geometrically. We seek a vector x ∈ Rn such
that Ax ∈ Rm is closest to point b in range of A (see Fig. 2.4).

x

y

b

y = Ax

Projection

Figure 2.10: Orthogonal projection.

We want to find Ax in the range of A such that r = Ax − b is minimum. It is clear
from the geometry that Ax = Pb is the solution where P ∈ Rm×m is the orthogonal projection
operator that maps Rm to range of A. In other words, the residual must be orthogonal to
range(A).



MA637 - Numerical Analysis and Computing Winter Semester 2024-2025

Theorem 2.39. Let A ∈ Rm×n (m ≥ n) and b ∈ Rm be given. A vector x ∈ Rn

minimizes the residual norm ∥r∥2 = ∥b−Ax∥2 thereby solving the least square problem
if and only if r ⊥ range(A), i.e.,

A⊤x = 0, (2.18)

or
A⊤Ax = A⊤b, (2.19)

or
Pb = Ax, (2.20)

where P ∈ Rm×m is the orthogonal projection onto range(A). The n×n system Eq. (2.19)
known as normal equation is non-singular if and only if A has full rank.

We have not talked about the orthogonal projection P, but we will use its certain
formulations, the major one being P = A

(
A⊤A

)−1
A⊤. Interested readers can read any

standard Linear Algebra book to read more about it; see [5, Section 6.6].

Now how do we actually solve Eq. (2.18), Eq. (2.19) or Eq. (2.20)? If A has full rank,
then the solution to the least square problem is unique and given by

x =
(
A⊤A

)−1
A⊤b.

The matrix
(
A⊤A

)−1
A⊤ is called the pseudoinverse of A and is denoted by A+. This is a

matrix of size n×m. The problem is to compute one or both vectors

x = A+b y = Pb,

where A+ is the pseudoinverse of A.

First, look at Eq. (2.19) and try to solve it. Now, we have that A⊤A is a symmetric
and positive definite matrix. Hence, we can apply Cholesky Decomposition (see 10) to write

A⊤A = LL⊤

and then solve (LL⊤)x = A⊤b to get x. Here, it is important to note that we need to solve
two systems of equations.

2.4.1 QR Decomposition

We have seen that matrix factorization has certain advantages. There is one factorization that
is useful for least square methods.

We recall from Linear Algebra that give linearly independent vectors {u1,u2, . . . ,un}
in Rn we can compute an orthogonal linearly independent set of vectors {q1,q2, . . . ,qn} using
Gram Schmidt orthogonalization [5, Theorem 6.4]. Further,we can also compute an orthonor-
mal set of linearly independent vectors {q̂1, q̂2, . . . , q̂n}. In matrix notation it means if we
denote A|m×n by columns of {Ai}ni=1 and Q|m×n by {q̂i}ni=1 then

A = QR,
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where R is a n×n matrix. To compute R, we re-write the Gram-Schmidt orthogonalization as

A1 = q̂1∥q1∥
A2 = q̂2∥q2∥+ ⟨A2, q̂1⟩∥q̂1∥
A3 = q̂3∥q3∥+ ⟨A3, q̂1⟩∥q̂1∥+ ⟨A3, q̂2⟩∥q̂2,

where ⟨·, ·⟩ denotes the ℓ2 inner product. Looking at the pattern, we notice that R is an upper
triangular matrix such that

rij =


⟨Aj,qi⟩ if i < j,
∥qi∥ if i = j,
0 else.

The existence of the QR factorization comes from Gram-Schmidt orthogonalization,
and the uniqueness follows the same logic as in Theorem 2.5.

Now, to solve Eq. (2.20) using A = QR and the definition of P we note that

P = A
(
A⊤A

)−1
A⊤

= (QR)
[
(QR)⊤ QR

]−1

(QR)⊤

= QR
[
R⊤Q⊤QR

]−1
R⊤Q⊤

= QR
[
R⊤R

]−1
R⊤Q⊤

= Q
(
RR−1

) (
R⊤)−1

R⊤Q⊤

= QQ⊤.

The above result holds as Q⊤ is the left-inverse of Q. Using this, we re-write

Pb = Ax

QQ⊤b = QRx

Q⊤b = Rx.

Hence, we get x = R−1Q⊤b. Here, we note that we only need to solve one system of equations.

The algorithm for QR decomposition using Gram-Schmidt orthogonalization is present
in Algorithm 14.



MA637 - Numerical Analysis and Computing Winter Semester 2024-2025

Algorithm 14 QR Decomposition

Given: Matrix A ∈ Rm×n with m ≥ n.
Find: Orthonormal matrix Q and upper triangular matrix R such that A = QR

Step 1: Initialize Matrices
Initialize Q as a zero matrix of size m× n.
Initialize R as a zero matrix of size n× n.
for j = 1 to n do

Set qj = Aj

for i = 1 to j − 1 do
rij = ⟨qi,Aj⟩
qj = qj − ri,jqi

end for
rjj = ∥qj∥2.
q̂j = qj/rjj .

end for

return Q = [q̂1, q̂2, . . . , q̂n], R



Chapter 3

Computing

The word computing has different meanings based on context and definition. According to
Wikipedia:

Computing is any goal-oriented activity requiring, benefitting from, or creating com-
puting machinery.

This definition creates a recursive loop, as it uses “computing” to define itself. To break
this loop, let us explore what a computer is. Wikipedia defines it as:

A computer is a machine that can be programmed to automatically carry out se-
quences of arithmetic or logical operations (computation).

Here, two terms stand out: arithmetic and logical. These are fundamental concepts
that mathematicians are familiar with. Thus, we have some basic understanding of computing.

In this course, we will not delve deeply into the workings of a computer. It is assumed
that students are familiar with components like the keyboard, mouse (or trackpad), CPU, and
monitor. For a refresher, see Figure 3.1.

Figure 3.1: Parts of a computer from the early 2000s.

The primary aim of this course is to teach the fundamentals of programming using the
Python language. This is not an Introduction to Python course. Instead, the focus is on how
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to think about coding problems, understand common paradigms across languages, adopt good
coding practices, maintain code, and debug effectively.

3.1 Good Practices in Coding

Coding is an art form, and like any art, its true audience is those who interact with it (in this
case, the users of the code). A good codebase should be well-documented. Comments should
explain the purpose of each function or variable. The beginning of the code should clearly state
its objective.

3.1.1 Variable Initialization and Naming

Variables and functions should have descriptive names. For example, if a variable represents
the number of oranges, naming it n_oranges is much clearer than simply using n. Additionally,
variables should be initialized to prevent the use of garbage values.

Indentation of the conditional and iterative statements are important as it helps to
differentiate different loops (or if-else statements).

In Python, indentation is mandatory, making this practice less error-prone. However,
for languages like C++, proper formatting and indentation are crucial. Below we give an
example of bad coding vs good coding in C++.

Bad Example:

int n_oranges;
for (int i = 0; i < 10; i++)
{
std::cout << i;
for(int j=0;j<2;j++
{
std::cout <<i+j;
}
std::cout <<n_oranges;
}

Good Example:

int n_oranges = 0;
for (int i = 0; i < 10; i++)
{

std::cout << i;
for (int j = 0; j < 2; j++)
{

std::cout << i + j;
}
std::cout <<n_oranges;

}
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3.1.2 Reusability and Modularity

Code should be reusable and modular . For instance, consider a program that computes
the Taylor series of a function. Instead of hardcoding the factorial computation in the main
function, create a separate function for it. This is called modularity. This approach makes the
code reusable. If another project requires the computation of 2Ck, the factorial function can
be reused without rewriting it.

3.2 Testing and Continuous Integration
Testing is a critical aspect of programming to ensure correctness and reliability. Continuous
integration ensures that code changes do not break existing functionality.

After writing code, how do we know if it is correct? One effective approach is to verify
the solution produced by the code against a pre-existing known solution. For example, if we
write code to find the roots of a function, we can test its accuracy by using values with known
solutions, such as x2 = 2.

It is always advisable to run the code on multiple test cases to validate its correctness.
Once the code is verified, we can create specific test routines to ensure its reliability in various
scenarios.

3.3 Introduction to Computing Using Python
This course covers various aspects of computing, but we begin with the basics to build a strong
foundation.

3.3.1 Variables

In Python, there are three commonly used variable types:

• int: Represents integers.

• str: Represents strings (text).

• float: Represents floating-point numbers (decimals).

Python does not require explicit variable declaration; you can assign values directly.
For example:

n_oranges = 10 # An integer
price_oranges = 10.4 # A floating -point number

To define strings, use double quotes ("):

fruit = "oranges" # A string

To check the type of a variable, use the type() function:

print(type(n_oranges)) # Output: <class ’int ’>
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Another important variable type is the list, which can contain multiple values of dif-
ferent types:

list_fruits = [n_oranges , price_oranges , fruit] # A list with mixed
types

While there are more variable types in Python, these four are essential for now.

Note: The print() function is used to display information. We will explore more
advanced printing techniques later.

3.3.2 Arithmetic Operations

Arithmetic operations are fundamental in any programming language. Python provides the
following operations:

Operation Description Example
+ Addition 2 + 2 = 4
− Subtraction 6− 2 = 4
∗ Multiplication 2 ∗ 2 = 4
/ Division 2/2 = 1
∗∗ Exponentiation 2 ∗ ∗2 = 4
== Equality comparison 2 == 2
% Modulus (remainder) 3%2 = 1

Table 3.1: Arithmetic Operations in Python

Additionally, the ! = operator means "not equal to," as in 3 ̸= 2.

These operations allow us to build more advanced functions and logic.

3.3.3 Compound Assignment

Python supports shorthand operations for self-assignment:

A = 10
A = A + 10 # Equivalent to:
A += 10

This shorthand applies to all arithmetic operations (+=, -=, *=, /=, etc.).

Note: When performing operations on variables of different types, such as int and
float, Python automatically converts the result to float. For example:

result = 10 + 10.5 # result is a float (20.5)

However, operations combining str with int or float will result in errors:

"10" + 10 # This will raise a TypeError



MA637 - Numerical Analysis and Computing Winter Semester 2024-2025

Experiment with different cases to understand how Python handles these scenarios.
Also, remember that Python follows the BODMAS convention.

3.3.4 Logical Operations

Another important class of operations is logical operations. These operations are used when
you need to run specific parts of the code based on multiple conditions. For example:

• To check if a number is greater than 5 and divisible by 3.

• To check if a number is greater than 5 or divisible by 3.

In both cases, you have a logical expression to evaluate. Python provides three logical
operators to handle such cases:

(i) and: Evaluates to True if both conditions A and B are true, otherwise False.

(ii) or: Evaluates to True if at least one of the conditions A or B is true, otherwise False.

(iii) not: Returns the negation of condition A.

The truth table for these logical operators is shown below:

A B A and B A or B not A
T T T T F
T F F T F
F T F T T
F F F F T

Table 3.2: Truth table for logical operators.

Logical operations can also involve more than two conditions. For example, suppose you
have three conditions: A, B, and C. In such cases, you can group conditions using parentheses
to control the order of evaluation. For instance:

• Check (A and B) first, and then combine the result with C.

• Evaluate A or (B and C) to prioritize B and C.

This flexibility allows for constructing complex logical expressions tailored to your re-
quirements.

3.4 Conditional Statements
Conditional statements allow executing specific code blocks depending on conditions. In Python,
the syntax is as follows:

if condition_1:
execute_1

else:
execute_2
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Example: Checking if a number is even or odd:

eval_point = 5
if eval_point % 2 == 0:

print(f"The number {eval_point} is even.")
else:

print(f"The number {eval_point} is odd.")

For multiple conditions, we use if-elif-else:

eval_point = 5
if eval_point % 2 == 0:

print(f"The number {eval_point} is divisible by 2.")
elif eval_point % 3 == 0:

print(f"The number {eval_point} is divisible by 3.")
else:

print(f"The number {eval_point} is not divisible by 2 or 3.")

Note: An else statement is usually not necessary for an if statement. Suppose we
want to check if a number is even we can use

eval_point = 5
if eval_point % 2 == 0:

print(f"The number {eval_point} is divisible by 2.")

Here we want to check if the number is even without checking if it odd or not.

Note: Here we have introduced a new way to print. The print(f"...") command is
printing a formatted string. It prints the characters as well as the variable values defined in
the curly braces {·}.

3.5 Recursive Statements
Recursive Statements allow repetitive execution of code blocks.

3.5.1 For Loop

The syntax for a for loop in Python is:

for i in range(a, b):
execute_1

Here:

• i: The loop iterator.

• range(a, b): Specifies the range of values, starting at a and stopping before b, i.e., it
goes over a, a+ 1, . . . , b− 1.

Example: Summing numbers from 1 to 9:
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total_sum = 0
for i in range(1, 10):

print(i)
total_sum += i

print(f"The summation of 9 points: {total_sum}")

3.5.2 Custom Step Size

The default step size of a for loop is one. If we want to use a custom step-size then we can
use the following modification:

for i in range(a, b, step):
execute_1

Example: Summing odd numbers from 1 to 9:

total_sum = 0
for i in range(1, 10, 2):

print(i)
total_sum += i

print(f"The summation of 10 points with step 2: {total_sum}")

3.5.3 Break and Continue

While using loops there can be cases when we want to exit the loop due to some condition.
Also we can have cases when we want to skip some iteration. In this case we use break and
continue, respectively.

• break : Exits the loop entirely.

• continue : Skips the current iteration and moves to the next.

Example: Adding even numbers up to 10 but stopping at 7:

total_sum = 0
for i in range (10):

if i == 7:
break

if i % 2 == 1:
continue

print(i)
total_sum += i

print(f"The summation of even numbers: {total_sum}")

3.5.4 Nested Loops

A for loop can be nested within another for loop. For example, to generate multiplication
tables:
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for i in range(1, 5):
print(f"The table of {i}")
for j in range(1, 11):

print(f"{i} x {j} = {i * j}")

3.6 Functions

Until now, we have focused on sequential coding. However, to enhance reusability and main-
tainability, modular coding is essential. Functions enable modular programming by allowing
code reuse. The syntax for creating a function is:

def function_name(input_1 , input_2):
# Function body
result = some_operation(input_1 , input_2)
return result

Example: Function to check if a number is even:

def is_even(number):
if number % 2 == 0:

return True
else:

return False

value = 20
result = is_even(value)
print(f"The number {value} is even: {result}")

Note:

• A function can accept multiple inputs, a single input, or no input at all.

• A function may include multiple return statements or omit a return entirely, in which
case it returns None by default.

Example: Function with multiple return statements:

def analyze_number(number):
if number > 0:

return "positive", number
elif number < 0:

return "negative", number
else:

return "zero", number

result_type , result_value = analyze_number (-5)
print(f"The number {result_value} is {result_type }.")
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3.7 NumPy Library

In this section we provide an introduction to the NumPy library, a fundamental Python library
for mathematical computations.

Importing the Library

To use NumPy in Python, the library must be imported. The standard convention is to import
it with the alias np:

Import the NumPy library as follows: import numpy as np.

3.7.1 Arrays and Matrices

NumPy arrays are versatile tools used as vectors (one-dimensional) or matrices (two-dimensional).
For instance:

• A one-dimensional array can be thought of as a row vector, e.g., [1, 2, 3, 4]. This kind of
array can be created using temp_array = np.array([1, 2, 3, 4]).

• A two-dimensional matrix is defined by nesting arrays, e.g.,
[
1 2 3 4
5 6 7 8

]
. This kind of

array can be created using temp_array = np.array([[1, 2, 3, 4], [5, 6, 7, 8]]).

Key commands include:

• np.size(array): Returns the total number of elements in an array.

• np.shape(array): Provides the dimensions of an array.

Special Arrays: Zeros and Ones

It is common to initialize arrays with default values such as zeros or ones. This helps avoid
uninitialized or garbage values in computations. For example:

• A zero matrix of size 10× 10 can be created using np.zeros((10, 10)).

• Similarly, a ones matrix of the same size is created with np.ones((10, 10)).

Indexing in Arrays and Matrices

In NumPy:

• Indexing starts at 0.

• Negative indexing allows access to elements from the end, e.g., −1 refers to the last
element.
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For matrices, indexing uses row and column coordinates. For example, the element at row 0,
column 0 in a matrix is accessed as [0][0]. Suppose we have the following n× n matrix

A =


a00 a01 . . . a0 n−1

a10 a11 . . . a1 n−1
...

... . . . ...
an−1 0 an−1 1 . . . an−1 n−1

 ,

then the an−1 n−1 entry can be accessed using A[−1][−1] as well as A[n − 1][n − 1]. Similarly,
a0 n−1 can be accessed using A[0][−1] and A[0][n− 1].

3.7.2 Linspace

To generate arrays with evenly spaced points, the np.linspace function is used:

For an array between a and b with n elements, use the syntax:
np.linspace(a, b, n).

This is particularly useful for numerical methods. It it important to note that the end points
a, b are included and the spacing between the points is (b− a)/(n− 1).

3.7.3 Mathematical Functions

NumPy provides a wide range of mathematical functions, including:

• Trigonometric functions: np.sin, np.cos, etc.

• Hyperbolic functions: np.sinh, np.cosh, etc.

• Absolute value: np.abs.

For example, the sine and absolute value of −π can be computed using np.sin(-np.pi) and
np.abs(-np.pi). For a comprehensive list of available mathematical routines, refer to the
official documentation: https://numpy.org/doc/stable/reference/routines.math.html.

https://numpy.org/doc/stable/reference/routines.math.html
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