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Preface

These notes are designed to provide a structured and comprehensive understanding of the
course content. They will cover key topics, concepts, and computational techniques that are
fundamental to numerical analysis of partial differential equations. Please note that this is the
first iteration (Version 0.0.1) of the notes and hence there is a chance that some of the content
is incorrect. If you find some flaws, please email me at abhinav.jha@iitgn.ac.in.
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Just because someone stumbles and loses their path, doesn’t mean they’re lost forever.

—Prof. Charles Xavier

4



Contents

1 Partial Differential Equations 7
1.1 Heat Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.1.1 Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.1.2 Poisson Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.1.3 Non-Dimensional Form . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.2 Classification of PDEs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.3 Analytical Solution to Elliptic PDEs . . . . . . . . . . . . . . . . . . . . . . . . 15

2 Finite Difference Methods 19
2.1 Dirichlet Problem in Square Domain . . . . . . . . . . . . . . . . . . . . . . . . 19

2.1.1 Implementation of Five-Point Stencil . . . . . . . . . . . . . . . . . . . . 22
2.1.2 Convergence Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.1.3 Discrete Maximum Principle . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.2 Advanced Topics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.2.1 Neumann Problem in Square Domain . . . . . . . . . . . . . . . . . . . . 34
2.2.2 Non-Rectangular Domains . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.2.3 Higher-Order Discretisation . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3 Introduction to Functional Analysis 51
3.1 Function Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.1.1 Banach Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.1.2 Space of Measurable Functions . . . . . . . . . . . . . . . . . . . . . . . 57
3.1.3 Dual Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
3.1.4 Hilbert Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.2 Sobolev Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
3.2.1 Sobolev Embedding Theorem . . . . . . . . . . . . . . . . . . . . . . . . 78
3.2.2 Trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
3.2.3 Gauss and Green Formulas . . . . . . . . . . . . . . . . . . . . . . . . . . 81
3.2.4 Domains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

3.3 Fixed Points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4 Weak Solution Theory 87
4.1 Variational Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.1.1 Symmetric Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
4.1.2 Non-Symmetric Problems . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5



MA643 - Numerical Analysis of Partial Differential Equations Summer Semester 2025

4.2 Weak Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
4.2.1 General Elliptic Operator . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.3 Galerkin Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
4.3.1 Abstract Error Estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5 Finite Element Method 103
5.1 Triangulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.1.1 Simplex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
5.1.2 Barycentric Coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
5.1.3 Affine Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
5.1.4 Shape Regularity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.2 Finite Element Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
5.2.1 Polynomial Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
5.2.2 Nodal Functionals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
5.2.3 Finite Element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
5.2.4 Finite Element Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

5.3 Implementation of FEM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
5.3.1 Meshing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
5.3.2 Assembly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
5.3.3 Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
5.3.4 Computation of Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

6



Chapter 1

Partial Differential Equations

In real life, many physical phenomena are governed by differential equations. From the steam
rising from your morning coffee to the spread of pollution in the air, these processes can often
be modeled using partial differential equations (PDEs).

Figure 1.1: Smoke coming out of an industrial chimney.

Let us consider a simple example. Imagine smoke rising from an industrial chimney (see
Fig. 1.1). What do you observe? First, the smoke is carried in the direction of the wind. Then,
it begins to disperse into the surrounding air. Finally, although not directly visible, chemical
reactions take place between the smoke and components of the atmosphere. The equation
that models such behavior is known as the convection–diffusion–reaction equation—one among
many PDEs used to describe natural phenomena.

The origin of differential calculus can be traced back to the foundational work of Isaac
Newton and Gottfried Wilhelm Leibniz. The study of PDEs, however, is typically credited to
Jean le Rond d’Alembert, who investigated the wave equation in the 18th century. Subsequent
major contributions came from Leonhard Euler, who formulated what are now called the Euler
equations for fluid dynamics.

This chapter provides a brief introduction to partial differential equations: how they are
derived, how they are classified, and what challenges arise when attempting to solve them ana-
lytically. For a deeper understanding, the reader is encouraged to consult textbooks dedicated
to this topic. Some recommended references include [8, 12].
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Figure 1.2: From left to right: Isaac Newton: 4 January 1643 – 31 March 1727, Gottfried
Wilhelm Leibniz: 1 July 1646 – 14 November 1716, Jean le Rond d’Alembert : 16 November
1717 – 29 October 1783, and Leonhard Euler : 15 April 1707 – 18 September 1783.

1.1 Heat Equation

Engineers and physicists are often interested in properties of materials that vary continuously
in space and time. Let x := (x, y, z) denote the spatial coordinates and t denote time. One
fundamental concept in this context is that of conservation.

So, what is a conservation law? At its core, a conservation law is concerned with
tracking changes in a material property within a control volume V , which is enclosed by a
surface S. It relates the change of that property inside V to its production within the volume
and its flow across the boundary.

There are three key components involved in formulating a conservation law:

1. The quantity Q of the property per unit volume,

2. The rate F at which the property is produced or destroyed (i.e., net production) per unit
volume, and

3. The net flux of the property through the surface S, i.e., the flow of the property into or
out of the volume.

If q denotes the flux vector (i.e., flow rate per unit area) at a point inside V , then the
flux across the boundary at a point on S is given by q · n, where n is the outward unit normal
vector (see Fig. 1.3).

V

S

n

q·n

Figure 1.3: Flux vector q flowing through the boundary S enclosing volume V .

A conservation law can be succinctly stated as:

The rate of change of Q inside the volume is equal to the net production within the
volume minus the net outward flux through its boundary.
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Mathematically, the conservation principle can be expressed as

d

dt

∫
V

QdV =

∫
V

F dV −
∫
S

q · n dS. (1.1)

Using the divergence theorem (also known as Gauss’s theorem), the surface integral can
be converted into a volume integral:∫

S

q · n dS =

∫
V

∇ · q dV.

Furthermore, if the control volume V is fixed (i.e., independent of time), we can inter-
change the order of time differentiation and volume integration in the first term of Eq. (1.1),
yielding ∫

V

(
dQ

dt
+∇ · q − F

)
dV = 0,

where ∇ · q denotes the divergence of the flux vector q.

Since V is arbitrary, the integrand must vanish pointwise (see [13, Proposition 6.3.3]).
This gives the local form of the conservation law:

dQ

dt
+∇ · q = F. (1.2)

The quantities Q, q, and F generally depend on the unknown variable u (e.g., temper-
ature or concentration), the spatial position x, time t, and physical properties of the medium
such as conductivity or density.

We now turn to a classical example: the heat equation, where the quantity of interest
is temperature, denoted by u(t,x). Joseph Fourier is credited with the derivation and solution
of the heat equation, which he introduced in his 1822 work Théorie analytique de la chaleur.

Figure 1.4: Joseph Fourier: 21 March 1768 – 16 May 1830

Let C(u) be the specific heat capacity, i.e., the amount of heat energy required to raise
the temperature of a unit mass by one degree. If u0 is a reference (or base) temperature, then
the thermal energy per unit mass is

E =

∫ u

u0

C(u) du.
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The thermal energy per unit volume is then ρE, where ρ is the material density. Thus,
the conserved quantity is

Q = ρE = ρ

∫ u

u0

C(u) du.

If ρ and C are constant, this simplifies to

Q = ρC(u− u0).

The heat flux q is given by Fourier’s law :

q = −λ∇u,

where λ is the thermal conductivity—a material property that quantifies the ability to conduct
heat. The negative sign indicates that heat flows from regions of high temperature to low
temperature.

Assuming no other modes of heat transfer and letting F (u,x, t) represent the internal
heat sources (or sinks) per unit volume, the energy conservation law (1.2) becomes

ρCut −∇ · (λ∇u) = F.

If λ is constant, this further simplifies to the classical heat equation:

ut − ε∆u = f, (1.3)

where the thermal diffusivity is ε = λ
ρC

and the source term is f = F
ρC

.

We assume that Eq. (1.3) is posed over a spatial domain Ω with boundary Γ, and the
time variable t ranges over the interval [0, T ].

The heat equation is not limited to thermal processes. Equations of the form (1.3) arise
in many other diffusive phenomena, such as chemical diffusion, pollutant dispersion, and image
smoothing.

1.1.1 Boundary Conditions

Another important aspect of a partial differential equation (PDE) is the specification of ap-
propriate boundary conditions. There are three major types of boundary conditions commonly
encountered in physical problems:

1. Dirichlet Boundary Condition Named after Peter Gustav Lejeune Dirichlet, this con-
dition prescribes the value of the solution itself on a portion of the boundary. In the
context of heat transfer, it specifies the temperature u(t,x) on a part of the boundary:

u = g, on (0, T )× ΓD,

where ΓD ⊂ Γ. These are also referred to as essential boundary conditions.
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2. Neumann Boundary Condition Named after Carl Neumann, this condition prescribes
the heat flux across the boundary. It specifies the normal derivative of the solution on a
portion of the boundary:

−∂u

∂n
= g, on (0, T )× ΓN,

where ΓN ⊂ Γ. These are also called natural boundary conditions.

3. Robin Boundary Condition Named after Victor Gustav Robin, this condition models
convective heat exchange at the boundary according to Newton’s law of cooling. It is a
combination of Dirichlet and Neumann conditions:

∂u

∂n
+ h(u− uenv) = 0, on (0, T )× ΓR,

where ΓR ⊂ Γ, h is the heat transfer coefficient, and uenv is the ambient temperature.

In addition to boundary conditions, an initial condition is required to fully determine
the solution. This specifies the state of the system at the initial time t = 0:

u(0,x) = u0(x), for x ∈ Ω.

Figure 1.5: Peter Gustav Lejeune Dirichlet : 13 February 1805 – 5 May 1859 (left) and Carl
Neumann : 7 May 1832 – 27 March 1925 (right).

1.1.2 Poisson Equation

If the temperature remains constant in time, we obtain a special case of the heat equation:

−ε∆u = f, in Ω, (1.4)

which is known as the Poisson equation. It is named after Siméon Denis Poisson, who published
it in 1823. When the source term vanishes, i.e., f(x) = 0, the equation reduces to the Laplace
equation, named after Pierre-Simon Laplace, who studied it in 1786.

Solutions to the Laplace equation are known as harmonic functions. These functions
play a central role in an area of mathematics known as harmonic analysis, which connects
PDEs with Fourier analysis, potential theory, and other fields.

The focus of this course will be on developing numerical methods for solving the Poisson
equation.
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Figure 1.6: Siméon Denis Poisson : 21 June 1781 – 25 April 1840 (left) and Pierre-Simon
Laplace : 23 March 1749 – 5 March 1827 (right).

1.1.3 Non-Dimensional Form

Until now, we have discussed PDEs from the perspective of engineers and physicists, deriving
equations based on physical laws. However, one important aspect we have not yet addressed is
the role of units or dimensions in these equations.

In the natural sciences, units play a fundamental role. The most widely used and
standardized unit system is the International System of Units (SI). For example, the SI unit
of energy is the joule. More fundamentally, the SI system is built upon seven base quantities,
each associated with a specific unit (see Table 1.1). Other units can be expressed in terms of
these base units. For instance, one joule is equivalent to kg m2 s−2 in base units.

Symbol Name Base Quantity
s second time
m metre length
kg kilogram mass
A ampere electric current
K kelvin thermodynamic temperature

mol mole amount of substance
cd candela luminous intensity

Table 1.1: SI base units corresponding to the seven fundamental physical quantities.

We now examine whether the heat equation (1.3) is dimensionally consistent, i.e.,
whether all terms in the equation have the same physical units. From this point onward,
we restrict ourselves to the SI base unit system.

Recall that u(t,x) represents temperature, which is measured in kelvins (K). The ther-
mal diffusivity ε = λ/(ρC) is a material parameter composed of:

• Thermal conductivity λ with units kg m s−3 K−1,

• Density ρ with units kg m−3,

• Specific heat capacity C with units m2 s−2 K−1.

Thus, the thermal diffusivity ε has units:

ε =
λ

ρC
⇒ m2 s−1.

12
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The source term is given by f = F/(ρC), where F has units of heat generated per unit
volume per unit time: kg m−1 s−3. Consequently,

f =
F

ρC
⇒ K s−1.

On the left-hand side of the heat equation, the time derivative ut has units K s−1,
while the Laplacian ∆u has units K m−2, and multiplying it by ε yields K s−1. Therefore, all
three terms in the heat equation have consistent SI base units, confirming that the equation is
dimensionally valid.

In numerical analysis, it is often beneficial to work with a dimensionless form of the
equation. This allows for a formulation that is independent of measurement systems—for
example, temperature could be measured in either Kelvin or Celsius.

Let L, U , and T ∗ represent the characteristic length, temperature, and time scales of
the problem, respectively. We define the dimensionless variables (denoted by primes) as:

x′ =
x

L
, u′ =

u

U
, t′ =

t

T ∗ .

Using the chain rule, the derivatives transform as:

ut =
U

T ∗u
′
t′ , ∆u =

U

L2
∆′u′.

Substituting these into the heat equation gives:

U

T ∗u
′
t′ − ε

U

L2
∆′u′ = f, in

(
0,

T

T ∗

)
× Ω′,

u′
t′ − ε

T ∗

L2
∆′u′ =

T ∗

U
f, in

(
0,

T

T ∗

)
× Ω′,

where Ω′ is the dimensionless spatial domain. Note that both εT ∗

L2 and T ∗

U
f are dimensionless,

so all terms in the rescaled equation are nondimensional.

By abuse of notation, we drop the primes and obtain the dimensionless heat equation:

ut − ε∆u = f, in (0, T )× Ω,

where ε and f are now interpreted as nondimensional parameters. A similar procedure can be
used to obtain the dimensionless form of the Poisson equation.

1.2 Classification of PDEs
After exploring the modeling and physical derivation of partial differential equations (PDEs),
we now shift to a more abstract and mathematical perspective. In this course, we are primarily
interested in a specific class of PDEs known as second-order partial differential equations. To
make this precise, we begin by defining the notion of the order of a PDE.

13
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Definition 1.1 (Order of a PDE). The order of a partial differential equation is
the order of the highest derivative of the unknown function appearing in the equation.
For example, if the highest derivative is a second derivative, such as ∂2u/∂x2, then the
equation is said to be of second order.

Second-order PDEs play a central role in modeling a wide range of physical phenomena.
These equations are broadly classified into three types: elliptic, parabolic, and hyperbolic.

Let Ω ⊂ Rd, where d ∈ N. A general linear second-order PDE can be written in the
form

d∑
j,k=1

ajk(x) ∂j∂ku(x) + F (x, u, ∂1u, . . . , ∂du) = 0,

or equivalently,
∇ · (A(x)∇u) + F (x, u, ∂1u, . . . , ∂du) = 0,

where A(x) = [ajk(x)] is a matrix-valued function defined on Ω.

If u(x) is sufficiently smooth, then by Schwarz’s theorem, the mixed second partial
derivatives commute: ∂j∂ku = ∂k∂ju. This allows us to assume that the coefficient matrix
A(x) is symmetric. Even if A(x) is not symmetric initially, we can rewrite the equation in
symmetric form:

d∑
j,k=1

ajk(x) ∂j∂ku(x) =
∑
j<k

ajk(x) ∂j∂ku+
∑
j>k

ajk(x) ∂j∂ku+
d∑

j=1

ajj(x) ∂jju

=
∑
j<k

ajk(x) ∂j∂ku+
∑
j>k

ajk(x) ∂k∂ju+
d∑

j=1

ajj(x) ∂jju

=
∑
j<k

(ajk(x) + akj(x)) ∂j∂ku+
d∑

j=1

ajj(x) ∂jju

=
d∑

j,k=1

(
ajk(x) + akj(x)

2

)
∂j∂ku(x).

Hence, without loss of generality, we may take A(x) to be symmetric. As a result, all
eigenvalues of A(x) are real.

The classification of a second-order PDE depends on the signs of the eigenvalues of the
matrix A(x). Let:

• α be the number of positive eigenvalues,

• β the number of negative eigenvalues,

• γ the number of zero eigenvalues.

We say the PDE is of type (α, β, γ), and classify it as:

14
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• Elliptic PDE : Type (d, 0, 0) or (0, d, 0).

• Parabolic PDE : Type (d− 1, 0, 1) or (0, d− 1, 1).

• Hyperbolic PDE : Type (d− 1, 1, 0) or (1, d− 1, 0).

This matrix-based definition may be unfamiliar to those who have previously studied
PDEs only in two variables. To reconcile the two perspectives, consider the classical form of a
second-order PDE in two dimensions:

Auxx +Buxy +Cuyy +Dux + Euy + Fu = G.

Focusing only on the second-order part, the associated coefficient matrix is:[
A B

2
B
2

C

]
,

with determinant

AC− B2

4
.

From linear algebra, the determinant of a 2 × 2 symmetric matrix equals the product
of its eigenvalues (see [18]). Therefore, the sign of the discriminant B2 − 4AC determines the
PDE type:

• Elliptic if B2 − 4AC < 0,

• Parabolic if B2 − 4AC = 0,

• Hyperbolic if B2 − 4AC > 0.

This classical definition coincides with the eigenvalue-based classification and extends
naturally to higher dimensions.

Examples:

• The Poisson equation is elliptic.

• The Heat equation is parabolic.

• The Wave equation is hyperbolic.

1.3 Analytical Solution to Elliptic PDEs

Until now, we have derived partial differential equations (PDEs), classified them, and discussed
various boundary conditions. We now turn to the important question of the existence and
uniqueness of solutions, followed by how such solutions can be computed.

Before presenting the main result, we introduce some useful notations and definitions.

15
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Definition 1.2 (Multi-Index). A d-dimensional multi-index is a tuple α =
(α1, α2, . . . , αd), where each αi ∈ N∪{0}. The corresponding partial derivative is defined
as

∂α := ∂α1
1 ∂α2

2 · · · ∂αd
d , where ∂αi

i :=
∂αi

∂xαi
i

.

We denote the order by |α| =
∑d

i=1 αi.

Example 1.3. Let |α| = 2 If d = 2 then α = (1, 1), (2, 0), and (0, 2) and if d = 3 then
α = (1, 1, 0), (0, 1, 1), (1, 0, 1), (2, 0, 0), (0, 2, 0), and (0, 0, 2).

Definition 1.4 (Hölder Continuous Functions). Let Ω be an open subset of Rd,
0 < α ≤ 1, and k ≥ 0 an integer. The space of Hölder continuous functions is defined as

Ck,α(Ω) :=

{
f ∈ Ck(Ω) : sup

x̸=y∈Ω

|∂βf(x)− ∂βf(y)|
|x− y|α

< ∞ for all multi-index β with |β| = k

}
.

Remark 1.5. If α = 1 and k = 0, then C0,1(Ω) corresponds to the space of Lipschitz continuous
functions. For α = 0 and k = 0, we recover the space of bounded continuous functions.

Remark 1.6. A domain Ω ⊂ Rd is said to have a Ck,α boundary if, near every boundary point,
the domain can be locally represented as the graph of a Ck,α function. Intuitively, when you
zoom in near any boundary point, the boundary looks smooth up to order k with Hölder-
continuous derivatives of order k, and the domain lies entirely on one side of this surface.. For
example:

• The set Ω = {(x, y) ∈ R2 : y2 > x} has a C1,1 boundary, since near each boundary point
the curve can be written as y = ±

√
x, whose first derivatives are Lipschitz continuous.

• In contrast, Ω = {(x, y) ∈ R2 : y > |x|} does not have a C1 boundary, because the
boundary y = |x| has a corner at the origin where the derivative does not exist.

Theorem 1.7 (Existence and Uniqueness of Solution [11, Theorem 6.14]). Let
Ω ⊂ Rd be a bounded domain with C2,α boundary. Consider the elliptic boundary value
problem:

−ε∆u = f in Ω,

u = g on Γ.

If f ∈ C0,α(Ω) and g ∈ C2,α(Ω), then there exists a unique solution u ∈ C2,α(Ω).

Let us now consider some examples of the Poisson equation and their solutions:

1. On Ω = [0, 1]× [0, 1], with g = 0 and

f(x, y) = 2π2 sin(πx) sin(πy),

16
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the exact solution (see Fig. 1.7a) is

u(x, y) = sin(πx) sin(πy).

2. On Ω = {(x, y) : x2 + y2 < 1} (the unit disk), with g = 0 and f(x, y) = 4, the solution
(see Fig. 1.7b) in polar coordinates (r, θ) is

u(r, θ) = 1− r2.

3. On Ω = [−1, 1]2 \ [0, 1]× [−1, 0], with g = 0 and f(x, y) = 1, the problem does not admit
a classical solution. This is due to the re-entrant corner at (0, 0) where the domain fails
to have a C2,α boundary.

0

0.5
1

0

0.5
1

0

0.5

1

xy

u
(x
,y
)

u(x, y) = sin(πx) sin(πy)

(a) Solution on [0, 1]2.

−1
0

1

−1
0

1

−1

0

1

xy

u
(x
,y
)

u(x, y) = 1− x2 − y2

(b) Solution on the unit disk.

Figure 1.7: Solutions to the Poisson equation in two simple domains.

The first two examples can be solved analytically using the method of separation of
variables. In general, if a PDE admits a unique classical solution and the domain is regular
(e.g., a rectangle or a disk), then separation of variables can often be applied. However, this
approach fails for irregular domains such as that shown in Figure 1.8.

Ω Γ

Figure 1.8: A domain Ω with smooth, curved boundary Γ.

We observe that even for relatively simple domains, classical solutions may fail to exist.
For more complex domains, even when existence and uniqueness are guaranteed theoretically,
computing the solution explicitly can become intractable.

This leads us to two major motivations:

1. To reconsider and generalize the notion of a “solution” (e.g., to weak solutions).

2. To employ numerical methods to approximate solutions.

The next chapter will focus on Point 2: numerical methods. Point 1 will be revisited
later when we discuss the variational and weak formulations of PDEs.
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Chapter 2

Finite Difference Methods

In the previous chapter, we provided a general overview of partial differential equations (PDEs),
including their physical motivation, classification, boundary conditions, and the question of ex-
istence and uniqueness of classical solutions. We saw that analytical solutions are often limited
to highly idealized cases, and that even simple domains can present significant challenges. This
motivates the use of numerical methods, which will be the focus of this chapter.

We now turn our attention to the numerical solution of PDEs, specifically the Poisson
equation, which serves as a prototype for elliptic problems. This chapter will build on ideas
from the course MA637: Numerical Analysis and Computing, where we studied boundary
value problems in one dimension. In particular, we considered equations of the form

−y′′(x) = f (x, y(x), y′(x), y′′(x)) , for a ≤ x ≤ b, (2.1)

with Dirichlet boundary conditions y(a) = α and y(b) = β (see [9, Chapter 11]).

The methods developed for such one-dimensional problems extend naturally to two-
dimensional settings. By the end of this chapter, we aim to understand how to discretize
elliptic PDEs using finite difference methods, how to incorporate various types of boundary
conditions, and how to analyze the resulting schemes in terms of consistency, stability, and
convergence. We will also address practical aspects of solving the resulting linear systems
efficiently.

2.1 Dirichlet Problem in Square Domain
We begin our study of numerical methods with the Poisson equation subject to Dirichlet bound-
ary conditions. The goal is to find u ∈ C4(Ω) such that

−∆u = f in Ω, (2.2)
u = g on Γ, (2.3)

where Ω ⊂ R2 is a domain with boundary Γ := ∂Ω, and f ∈ C(Ω), g ∈ C(Γ). We begin by
considering the case Ω = (0, 1) × (0, 1), which allows us to adapt ideas from finite difference
methods (FDM) for boundary value problems in one dimension, similar to Eq. (2.1).

19



MA643 - Numerical Analysis of Partial Differential Equations Summer Semester 2025

The first step in solving the Poisson equation is to discretize the domain Ω using a
uniform grid of size h × h where h = 1/M for some integer M . The internal grid points are
defined by

Ωh = {(xi, yj) : xi = ih, yj = jh, i, j = 1, 2, . . . ,M − 1} .
We denote the boundary grid points by ∂Ωh and the complete set of grid points by Ωh = Ωh∪∂Ωh

(see Fig. 2.1).

x

y

xi

yj
(i, j)

Figure 2.1: A uniform grid on the domain Ω = (0, 1) × (0, 1). The white point represents an
interior grid node (i, j), and the black points are its four nearest neighbors used in the five-point
stencil.

Definition 2.1 (Grid Function). A vector u ∈ R(M+1)×(M+1) that assigns a function
value to each grid point is called a grid function.

For a grid point (xi, yj) ∈ Ωh, where xi = ih and yj = jh, we denote the numerical
approximation of the solution by ui,j, and the exact analytical solution by ui,j := u(xi, yj).
While the boundary values of u are known from the prescribed Dirichlet condition, the values
at interior points are computed by solving a system of equations.

Remark 2.2. Whenever we use bold notation such as u or f , it refers to the vector representation
over the grid. The subscripted form ui,j refers to the scalar value at the grid point (i, j).

Returning to Eq. (2.2), we recall that the Laplacian is given by

∆u = −
(
∂2u

∂x2
+

∂2u

∂y2

)
.

We use a Taylor expansion to approximate the second derivatives. At the grid point (xi, yj),
we have

∂2u

∂x2

∣∣∣∣
i,j

=
1

h2
(ui−1,j − 2ui,j + ui+1,j) +O(h2).

Letting δ2xui,j := ui−1,j − 2ui,j + ui+1,j, we get

∂2u

∂x2

∣∣∣∣
i,j

=
δ2xui,j

h2
+O(h2).
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Similarly, in the y-direction:

∂2u

∂y2

∣∣∣∣
i,j

=
δ2yui,j

h2
+O(h2), where δ2yui,j := ui,j−1 − 2ui,j + ui,j+1.

This gives the approximation:

−∆u
∣∣
i,j

≈ − 1

h2

(
δ2xui,j + δ2yui,j

)
+O(h2).

The finite difference equations that approximate the PDE are obtained by ignoring the
truncation error and replacing ui,j with the grid function value ui,j. This leads to the algebraic
equation

− 1

h2

(
δ2xui,j + δ2yui,j

)
= fi,j,

where fi,j := f(xi, yj). Substituting the definitions of δ2x and δ2y , we get:

4ui,j − ui+1,j − ui−1,j − ui,j+1 − ui,j−1 = h2fi,j, (2.4)

for each (xi, yj) ∈ Ωh.

Since the values of u at the boundary grid points are known from the Dirichlet condition,
we obtain a system of (M − 1)2 linear equations for the unknowns at the interior points. Each
equation involves the grid point and its four immediate neighbors, hence this is referred to as
the five-point stencil .

(i, j)

(i, j + 1)

(i, j − 1)

(i− 1, j) (i+ 1, j)

Figure 2.2: Five-point stencil: the central white node (i, j) is surrounded by its four nearest
neighbors (i± 1, j) and (i, j ± 1).

In the special case where f ≡ 0 (i.e., Laplace’s equation), Eq. (2.4) simplifies to

ui,j =
1

4
(ui+1,j + ui−1,j + ui,j+1 + ui,j−1) .

That is, the value at an interior grid point is the arithmetic mean of its four immediate neighbors
(see Fig. 2.2). This is reminiscent of the mean value property satisfied by harmonic functions
in complex analysis. Remarkably, our discrete solution satisfies a similar property, highlighting
the consistency of the method with the underlying theory.

21



MA643 - Numerical Analysis of Partial Differential Equations Summer Semester 2025

2.1.1 Implementation of Five-Point Stencil

We now examine the organization of the unknowns ui,j, which are indexed by two indices. To
convert them into a single column vector suitable for matrix-based computations, we arrange
the interior grid values into a matrix and then stack the columns. This yields

u =
[
u1 u2 · · · uM−1

]⊤
,

where each ui ∈ RM−1 represents a column vector of values along the vertical grid line xi, i.e.,

ui =
[
ui,1 ui,2 · · · ui,M−1

]⊤
.

Next, consider the matrix structure corresponding to the finite difference equation (2.4).
Each row in the matrix corresponds to a grid point (i, j) ∈ Ωh and involves at most five non-zero
entries due to the five-point stencil. At boundary-adjacent interior nodes, some terms involve
known values from the Dirichlet boundary condition and are moved to the right-hand side.

x

y

(1, 1)
(0, 1)

(1, 0)

Figure 2.3: Stencil at the bottom-left corner of the grid. The interior node (1, 1) (white)
depends on neighboring nodes. The Dirichlet boundary values at (0, 1) and (1, 0) (blue) are
known from boundary conditions, while the others are unknown.

For instance, consider (i, j) = (1, 1). The finite difference equation is

4u1,1 − u2,1 − u1,2 − u0,1 − u1,0 = h2f1,1,

⇒ 4u1,1 − u2,1 − u1,2 = h2f1,1 + g0,1 + g1,0,

where u0,1 = g0,1 and u1,0 = g1,0 are known from the Dirichlet data. Hence, only three unknowns
remain on the left-hand side.

We now focus on the matrix representation column by column. Fix a vertical index i
and consider the values ui,j for j = 1, 2, . . . ,M − 1. Each ui is influenced by its neighbors ui−1

and ui+1, as shown below.

For j = 1:
1

h2
(4ui,1 − ui−1,1 − ui+1,1 − ui,2 − ui,0) = fi,1.

Since ui,0 = gi,0 is known, this becomes:

4ui,1 − ui−1,1 − ui+1,1 − ui,2 = h2fi,1 + gi,0.
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For j = 2:
4ui,2 − ui−1,2 − ui+1,2 − ui,1 − ui,3 = h2fi,2.

For j = M − 1:

4ui,M−1 − ui−1,M−1 − ui+1,M−1 − ui,M−2 = h2fi,M−1 + gi,M ,

where ui,M = gi,M is again known from the boundary.

Writing these equations in matrix form for fixed i, we observe a tridiagonal structure:[
−1
] [

ui−1,1

]
+
[
4 −1

] [ui,1

ui,2

]
+
[
−1
] [
ui+1,1

]
= h2fi,1 + gi,0,

[
−1
] [

ui−1,2

]
+
[
−1 4 −1

] ui,1

ui,2

ui,3

+
[
−1
] [
ui+1,2

]
= h2fi,2,

...[
−1 4

] [ui,M−2

ui,M−1

]
+
[
−1
] [
ui+1,M−1

]
= h2fi,M−1 + gi,M .

Each column vector ui satisfies a linear system involving a tridiagonal matrix D ∈
R(M−1)×(M−1):

D =


4 −1 0 · · · 0

−1 4 −1 · · · 0
0 −1 4 · · · 0
...

... . . . . . . −1
0 0 · · · −1 4

 . (2.5)

Each ui is also coupled with neighboring columns ui−1 and ui+1 through identity matrices
(denoted by I). The full system for i = 1, 2, . . . ,M − 1 becomes:

−Iui−1 +Dui − Iui+1 = h2fi + gi,

where
fi =

[
fi,1 fi,2 · · · fi,M−1

]⊤
, and gi =

[
gi,0 0 · · · 0 gi,M

]⊤
.

The values u0 = g0 and uM = gM correspond to the Dirichlet boundary and are moved to the
right-hand side.

Stacking the equations for all i = 1, . . . ,M − 1, we obtain a linear system of the form

Au = f ,

where A ∈ R(M−1)2×(M−1)2 , and both u and f are vectors in R(M−1)2 . The matrix A has a block
tridiagonal structure given by

A =
1

h2


D −I

−I D
. . .

. . . . . . −I
−I D

 .
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The right-hand side takes the form

f =


f1
f2
...

fM−1

+
1

h2


g0 + g1

g2
...

gM−1 + gM

 ,

which accounts for the contributions from the boundary conditions.

Let us now examine the structure of the matrix A in more detail. Recall that A ∈
R(M−1)2×(M−1)2 , so it contains approximately M4 entries in total. However, if we inspect the
structure of A, particularly the second block row, we find that each block row contains roughly
5M non-zero entries—due to contributions from the main diagonal block and the two neighbor-
ing identity blocks. Consequently, the total number of non-zero entries in A is approximately
5M2.

This indicates that the matrix A is sparse, meaning that the majority of its entries are
zero. Fig. 2.4 illustrates the sparsity pattern of A for M = 10, with non-zero entries shown in
black.

Columns

R
ow

s

Figure 2.4: Sparsity pattern for matrix A for M = 10.

Definition 2.3 (Sparse Matrix). A matrix A ∈ Rn×n is called a sparse matrix if a
significant fraction of its entries are zero. The sparsity of a matrix is typically quantified
as the ratio

sparsity(A) = 1− number of non-zero entries in A

n2
.

Solving linear systems involving sparse matrices requires methods that exploit their
structure to reduce computational cost and memory usage. Among the most widely used direct
methods is LU decomposition, which factorizes A into a product of a lower triangular matrix
L and an upper triangular matrix U.

Remark 2.4. We might revisit sparse matrix storage schemes and efficient solution techniques—both
direct and iterative—later in the course when we focus on linear solvers.

Let us now look at the implementation of the matrix A and the right-hand side vector
f for the finite difference method (FDM).
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Definition 2.5 (Kronecker Product). Let A ∈ Rm×n and B ∈ Rp×q. The Kronecker
product A⊗B is defined as the block matrix:

A⊗B =

a11B · · · a1nB
... . . . ...

am1B · · · amnB

 ∈ Rmp×nq.

In component form, this means that each scalar entry aij of matrix A is multiplied by
the entire matrix B. For example, if A is 2× 2 and B is 2× 2, then:

A =

[
a11 a12
a21 a22

]
, B =

[
b11 b12
b21 b22

]
,

then

A⊗B =


a11b11 a11b12 a12b11 a12b12
a11b21 a11b22 a12b21 a12b22
a21b11 a21b12 a22b11 a22b12
a21b21 a21b22 a22b21 a22b22

 .

For the 2D finite difference discretization of the Poisson equation, the global stiffness
matrix A can be written as

A = A1 +A2,

where

A1 = I⊗D, and A2 = I⊗ I.

Here I is the tridiagonal matrix with zero diagonal and −1 on its first sub- and super-
diagonals:

I =


0 −1 0 · · · 0

−1 0 −1 · · · 0

0 −1 0
. . . ...

... . . . . . . . . . −1
0 · · · 0 −1 0

 .

Thus, the global matrix becomes:

A = I⊗D+ I⊗ I.

In Python, the Kronecker products can be constructed using the function np.kron(A,B)
from the NumPy library. Algorithm 1 presents a basic implementation of this method for the
2D Poisson equation with Dirichlet boundary conditions.
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Algorithm 1 Finite Difference Method for 2D Poisson Equation with Dirichlet BCs

Given: Domain Ω = (0, 1)2, Number of nodes per dimension: M , right-hand side:
f(x, y), boundary data: g(x, y)

Find: Approximate solution u on interior grid

Step 1: Meshing
Initialize h = 1

M

Define interior grid points xi = ih, yj = jh, for i, j = 1, 2, . . . ,M − 1
Total number of interior nodes N = M − 1

Step 2: Assemble matrix A
Define matrix D, I ∈ RN×N and by
for i = 0 to N − 1 do
Di,i = 4, Ii,i = 0
if i > 0 then
Di,i−1 = −1, Ii,i−1 = −1

end if
if i < N − 1 then
Di,i+1 = −1, Ii,i+1 = −1

end if
end for
Define identity matrix I ∈ RN×N

Define A =
(
I⊗D+ I⊗ I

)
/h2

Step 3: Assemble the RHS
Initialize load vector F ∈ RN2

for i = 0 to N − 1 do
for j = 0 to N − 1 do

Compute grid point: x = (i+ 1)h, y = (j + 1)h
Compute linear index: ℓ = i ·N + j
Fℓ = f(x, y)
Apply Dirichlet BCs:
if i = 0 then
Fℓ+ = g(0, y)/h2

end if
if i = N − 1 then
Fℓ+ = g(1, y)/h2

end if
if j = 0 then
Fℓ+ = g(x, 0)/h2

end if
if j = N − 1 then
Fℓ+ = g(x, 1)/h2

end if
end for

end for

Step 4: Solve the linear system
Solve Au = F for u ∈ RN2

return u
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2.1.2 Convergence Theory

Implementation of a numerical scheme is one aspect that primarily concerns engineers. Another
important aspect, which concerns mathematicians, is the study of its convergence properties.
We say a numerical solution u is a good approximation of the analytical solution u if the error
between them reduces as the discretization parameter h tends to zero. One important question
is how to measure the closeness of u and u, as u consists of discrete values, whereas u is a
continuous function.

We re-write Eq. (2.2) as Lu = F , where

Lu =

{
−∆u in Ω,
u on Γ,

and F =

{
f in Ω,
g on Γ.

(2.6)

We define the five-point stencil operator by Lhu = Fh, where

Lhu =

{
Lhu in Ωh,
Bhu on Γh,

and Fh =

{
f in Ωh,
g on Γh.

(2.7)

Here, Lhui,j := −h−2
(
δ2x + δ2y

)
ui,j and Bhui,j := ui,j, i.e., the identity operator.

The operator Lh approximates the continuous operator L. To quantify how well it does
so, we introduce the notion of local truncation error.

Definition 2.6. (Local Truncation Error) The local truncation error, denoted by Rh,
is defined as the residual when the exact solution u of Eq. (2.6) is substituted into the
discrete equation Eq. (2.7), i.e.,

Rh := Lhu−Fh.

Definition 2.7. (Consistency) The approximation Lhu = Fh is said to be consistent
with Lu = F if Rh → 0 as h → 0. It is said to be consistent of order p if Rh = O(hp)
with p > 0.

The first step is to verify whether the FDM is consistent. Since Dirichlet boundary
conditions are implemented exactly, we only need to analyze Lhu. Thus, the local truncation
error reduces to Rh = Lhu−f . Using Taylor series expansion for δ2xui,j and δ2yui,j at the internal
node (ih, jh), we get

Rh|i,j = −h−2
(
δ2x + δ2y

)
ui,j − fi,j

= − (uxx|i,j + uyy|i,j)− fi,j −
h2

12
(uxxxx + uyyyy) |i,j +O(h4)

= −h2

12
(uxxxx + uyyyy) |i,j +O(h4),

since −∆u = f . Hence, the method is consistent of order 2, provided u ∈ C4(Ω).
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Consistency tells us how closely Lh approximates L. The numerical solution u satisfies
Lhu = Fh, while the analytical solution u satisfies Lhu = Fh +Rh. To study their difference,
let e = u− u, where ei,j = u(xi, yj)− ui,j. Then,

Lhe = Lhu− Lhu = Rh.

We want the error e to go to zero as h → 0. This happens if Rh → 0 and Lh is invertible. This
leads to the notion of stability.

Definition 2.8. (ℓ∞ Stability) The discrete operator is said to be stable (with respect
to the maximum norm ∥ · ∥h,∞) if there exists a constant C > 0, independent of h, such
that the solution of the equation Lhu = Fh satisfies

∥u∥h,∞ ≤ C∥Fh∥h,∞,

where C is known as the stability constant.

A few things to note: first, the stability of Lh makes no reference to the original operator
L; second, stability depends on the particular norm, in this case the maximum norm ∥ · ∥h,∞.
This notion extends to other norms such as ℓp norms for 1 ≤ p < ∞. As a refresher, the ℓ∞
norm is defined as

∥u− u∥h,∞ = max
i,j

|u(xi, yj)− ui,j|.

As mentioned in the introduction, this is how we measure the closeness of the numerical solution.

Remark 2.9. The notion of ℓ∞ stability mirrors that of a well-posed problem. A boundary value
problem with a unique solution is said to be well-posed if the solution varies continuously with
respect to the input data. That is, if δf is a perturbation in the source or boundary terms and
δu is the resulting change in the solution, then ∥δu∥a ≤ C∥δf∥a for some norm ∥ · ∥a.

But why do we need both consistency and stability? To answer that, we now formally
define convergence.

Definition 2.10. (Convergence) A numerical method is said to converge if ∥u −
u∥h,∞ → 0 as h → 0. It is said to be convergent of order p if ∥u − u∥h,∞ = O(hp)
for some p > 0.

We introduced consistency and stability first because there is a fundamental relationship
among the three:

Theorem 2.11. (Convergence) Suppose that the discrete boundary value problem
Lhu = Fh is a consistent approximation of Lu = F and that Lh is ℓ∞ stable. Then
∥u− u∥h,∞ → 0 as h → 0. Moreover, if the order of consistency is p > 0, then the order
of convergence is also p.

Proof. Since Lh is ℓ∞ stable and the error e satisfies

Lhe = Rh,
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we have ∥e∥h,∞ ≤ C∥Rh∥h,∞. Because Lh is consistent of order p, we conclude that ∥e∥h,∞ → 0
as h → 0 with the same order, provided C is independent of h.

We have already seen that our method is consistent, and hence, if it is stable, then it
will also be convergent due to Theorem 2.11. Before we prove stability, we need to introduce a
few concepts. We first mention certain properties of the operator L.

• L is said to be linear if L(u+ αv) = L(u) + αL(v) for some scalar α.

• L is said to be inverse monotone if Lu ≥ 0 implies that u ≥ 0.

To prove stability, we also require a bounded, non-negative function φ(x), called a
comparison function, such that Lφ(x) ≥ 1 for all x ∈ [0, 1].

Lemma 2.12. (Stability) Suppose that the operator Lh is linear and inverse monotone,
and that there exists a comparison function Φ > 0 such that LhΦ ≥ 1. Then Lh is stable
with stability constant C = maxi,j Φi,j, provided Φ is bounded independently of h.

Proof. Let u be a solution of Lhu = Fh. We need to show that ∥u∥h,∞ ≤ C∥Fh∥h,∞. For a
particular (i, j)-th entry:

Lhui,j = (Fh)i,j ≤ ∥Fh∥h,∞
= ∥Fh∥h,∞ × 1

≤ ∥Fh∥h,∞LhΦi,j

= Lh (∥Fh∥h,∞Φ)i,j ,

which implies 0 ≤ Lh (∥Fh∥h,∞Φ− u)i,j. Hence, by inverse monotonicity, ui,j ≤ ∥Fh∥h,∞Φi,j.
Similarly, we obtain −ui,j ≤ ∥Fh∥h,∞Φi,j. Since −ui,j,ui,j ≤ |ui,j|, we get |ui,j| ≤ ∥Fh∥h,∞Φi,j.

Now, taking the maximum over all i, j:

∥u∥h,∞ = max
i,j

|ui,j| ≤ C∥Fh∥h,∞, where C = max
i,j

Φi,j.

Remark 2.13. In Lemma 2.12, we consider a grid function u. When we say u > 0, it means
ui,j > 0 for all i, j = 1, 2, . . . ,M − 1.

We now prove the stability of our FDM operator Lh.

Theorem 2.14. The difference operator Lh defined in Eq. (2.7) is stable.

Proof. We need to show two things for Lh to be stable. First is inverse monotonicity, and
second, we need to compute a comparison function Φ such that LhΦ ≥ 1.

Inverse Monotonicity: We need to show that Lhu ≥ 0 implies u ≥ 0.
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We proceed by contradiction. Suppose this is not true. Then there exists a grid function
u such that Lhu ≥ 0 but u < 0, i.e., there exists a point (i, j) such that

ui,j < 0. (2.8)

Let (i0, j0) be the point where the minimum occurs.

Now,

Lhui0,j0 =
1

h2
(4ui0,j0 − ui0+1,j0 − ui0−1,j0 − ui0,j0+1 − ui0,j0−1) .

Since ui0,j0 is the minimum, we have ui0,j0 ≤ ui0±1,j0 and ui0,j0 ≤ ui0,j0±1, which implies

ui0,j0 − ui0±1,j0 ≤ 0 and ui0,j0 − ui0,j0±1 ≤ 0.

Hence,

Lhui0,j0 =
1

h2

(
ui0,j0 − ui0+1,j0 + ui0,j0 − ui0−1,j0 + ui0,j0 − ui0,j0+1 + ui0,j0 − ui0,j0−1

)
≤ 0.

But we also assumed that Lhui0,j0 ≥ 0. Therefore, we must have Lhui0,j0 = 0, and all
terms in the sum must be zero:

ui0,j0 = ui0±1,j0 = ui0,j0±1.

That is, the value at (i0, j0) equals the values at its four neighbors. Now, pick one of these
neighbors, say (i0 + 1, j0), and apply the same argument. Again, you will conclude that all its
neighbors must have the same value. Repeating this process across the domain implies that u
is constant on Ωh.

Moreover, from (2.8), this constant is strictly negative: u < 0 on Ωh. But on the
boundary ∂Ωh, we use Dirichlet conditions: Lhu = Bhu = u = g, and from Lhu ≥ 0 this
implies g ≥ 0 on ∂Ωh. So we obtain a contradiction since u < 0 on the boundary. Hence, our
assumption is false, and we conclude that Lh is inverse monotone.

Comparison Function: Next, we need to find a comparison function Φ(x, y) > 0 and
show that LhΦ ≥ 1. Let us consider the function

Φ(x, y) = 1 +
1

2
x(1− x),

which is bounded and non-negative on [0, 1]2 (see Figure 2.5).

Now, compute LhΦi,j. Since Φ depends only on x, we can write:

LhΦi,j = − 1

h2
(−4Φi,j + Φi+1,j + Φi−1,j + Φi,j−1 + Φi,j+1)

= − 1

h2

(
− 4

(
1 +

1

2
xi(1− xi)

)
+

(
1 +

1

2
xi+1(1− xi+1)

)
+

(
1 +

1

2
xi−1(1− xi−1)

)
+

(
1 +

1

2
xi(1− xi)

)
+

(
1 +

1

2
xi(1− xi)

))
.
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Figure 2.5: Surface plot of the comparison function Φ(x, y) = 1+ 1
2
x(1−x), which is independent

of y.

Using xi±1 = xi ± h, compute:

xi+1(1− xi+1) = (xi + h)(1− xi − h) = xi(1− xi)− h(1− 2xi)− h2,

xi−1(1− xi−1) = (xi − h)(1− xi + h) = xi(1− xi) + h(1− 2xi)− h2.

Adding both:

xi−1(1− xi−1) + xi+1(1− xi+1) = 2xi(1− xi)− 2h2.

Substitute this into the expression for LhΦi,j:

LhΦi,j = − 1

h2

(
−4

(
1 +

1

2
xi(1− xi)

)
+ 2

(
1 +

1

2
xi(1− xi)

)
+

1

2
(2xi(1− xi)− 2h2)

)
= − 1

h2

(
−2− xi(1− xi) + xi(1− xi)− h2

)
= 1.

Hence, LhΦ = 1, and the comparison function condition is satisfied.

Therefore, both required properties are fulfilled, and Lh is ℓ∞ stable.

We have the consistency and stability of our numerical method. Therefore we have the
following result.

Corollary 2.15. The five-point approximation to the Poisson equation with a Dirich-
let boundary condition on the unit square, Ω, is second-order convergent if the fourth
derivatives of the exact solution are bounded.

Remark 2.16. (Experimental Order of Convergence (E.O.C.)) From theory, we expect
second-order convergence for the five-point scheme. To verify this numerically, we define the
order α of a method by

∥u− uh∥h,∞ = O(hα), for some α > 0, (2.9)

where uh denotes the solution obtained on a grid of width h. If we use a coarser grid of size
2h, then

∥u− u2h∥2h,∞ = O(2αhα).

31



MA643 - Numerical Analysis of Partial Differential Equations Summer Semester 2025

Therefore,
∥u− uh∥h,∞
∥u− u2h∥2h,∞

≈ 1

2α

which gives the estimate

α ≈ 1

log(2)
log

(
∥u− u2h∥2h,∞
∥u− uh∥h,∞

)
.

This quantity can be computed directly from numerical results and is called the experimental
order of convergence (E.O.C.).

Another way to estimate α is via a log-log plot. Taking the logarithm of Eq. (2.9) gives

log (∥u− uh∥h,∞) ≈ α log(h).

Defining Y = log (∥u− uh∥h,∞) and X = log(h), we obtain a linear relation Y ≈ αX. The
slope of the Y vs. X curve (for varying h) then provides an estimate of α.

Example 2.17. Consider Eq. (2.2) with

f = 2π2 sin(πx) cos(πy), g = 0.

The analytical solution is
u(x, y) = sin(πx) cos(πy).

We compute the numerical solution using the five-point stencil and report the results in
Table 2.1. We observe that the computed E.O.C. matches the theoretical prediction of
second-order accuracy. We also plot the log-log plot in Fig. 2.6.

h ∥u− u∥h,∞ E.O.C.
0.250000 0.053029 -
0.125000 0.012951 2.033754
0.062500 0.003219 2.008367
0.031250 0.000804 2.002087
0.015625 0.000201 2.000522
0.007812 0.000050 2.000130

Table 2.1: Example 2.17: Experimental order of convergence.

2.1.3 Discrete Maximum Principle

The analytical solution of Eq. (2.2) satisfies certain important properties. One such property
is the maximum principle.

Theorem 2.18. (Maximum Principle for the Poisson Problem) Suppose that the
function u(x, y) satisfies the inequality

−uxx − uyy ≤ 0,

for all (x, y) ∈ Ω. Then u(x, y) is either constant or attains its maximum value on ∂Ω.
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Figure 2.6: Log-log plot of error vs. mesh size h.

Remark 2.19. In some references (see [8]), maximum principles are distinguished as the local
maximum principle and the global maximum principle. Here, we present a unified version
encompassing both.

Remark 2.20. The maximum principle can also be understood from a physical point of view.
Consider the steady-state heat distribution on a metal plate governed by the Poisson equation
with no internal heat sources. Then, the maximum temperature must occur on the boundary
of the plate. Intuitively, this means that heat cannot spontaneously concentrate in the interior
if it is not being generated there, which aligns with our everyday physical experience.

The above theorem states that the maximum of the solution can occur only on the
boundary. If it is attained in the interior, then the solution must be constant.

An important aspect in designing numerical methods is ensuring that the numerical
solution also satisfies a discrete analogue of the analytical properties. In this case it will be the
discrete maximum principle.

Theorem 2.21. (Discrete Maximum Principle) Suppose that the discrete operator
Lhu is defined as in Eq. (2.7) and satisfies Lhu ≤ 0 at all grid points in Ωh. Then, either
u is constant in Ωh or it attains its maximum on the boundary ∂Ωh.

Proof. We proceed by contradiction. The proof follows the same structure as the proof of ℓ∞-
stability of Lh. Suppose u attains a non-constant maximum at an interior point (xi, yj), where
0 < i, j < M . Then, since Lhui,j ≤ 0, we have

ui,j ≤
1

4
(ui+1,j + ui−1,j + ui,j+1 + ui,j−1) .

But since ui,j is the maximum, it satisfies

ui,j ≥ ui±1,j, ui,j±1,

and hence
ui,j ≥

1

4
(ui+1,j + ui−1,j + ui,j+1 + ui,j−1) .
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Combining both inequalities, we conclude

ui,j =
1

4
(ui+1,j + ui−1,j + ui,j+1 + ui,j−1) ,

which can only happen if ui,j = ui±1,j = ui,j±1 as ui,j is the maximum. That is, all five values
are equal. Therefore, u attains the same maximum at the five-point stencil

{(i, j), (i± 1, j), (i, j ± 1)} .

Repeating the same argument for the four neighboring points and propagating this reasoning
through the domain, we find that either the solution is constant on Ωh or the maximum even-
tually appears on the boundary. This contradicts the assumption that the maximum occurs
strictly in the interior.

2.2 Advanced Topics

Until now, our focus has been on a simple problem, Eq. (2.2). A natural question that arises
is: why solve Eq. (2.2) numerically when analytical solutions exist? One reason is to better
understand the method, validate results computationally, and develop more advanced methods
for problems where analytical solutions are not available. In this section, we explore such
extensions.

2.2.1 Neumann Problem in Square Domain

Consider the Poisson problem with Neumann boundary conditions defined on the unit square
Ω := (0, 1)2,

−∆u = f in Ω,

∂nu = g on Γ,
(2.10)

where ∂nu := ∇u ·n denotes differentiation in the direction of the outward normal. From PDE
theory, the solution to this problem is not well-posed unless f and g satisfy the compatibility
condition ∫

Ω

f dΩ +

∫
Γ

g ds = 0. (2.11)

To develop a finite difference method for Eq. (2.10), we follow the same procedure as in
the previous section. We will consider two distinct cases: first, the case i = 0 and 0 < j < M
(inner boundary grid points); and second, the case i = 0 with j = 0 or j = M (corner boundary
grid points).

Inner Boundary Grid Points. Consider the grid point (0, jh) for 0 < j < M , i.e., a
point lying on the boundary x = 0 (see Fig. 2.7).

Here, the outward normal is n = (−1, 0). Hence, the Neumann boundary condition
becomes

∂nu = (−1, 0) · (ux, uy) = −ux = g(0, y), for 0 < y < 1. (2.12)
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n =
[
−1 0

]⊤
(0, jh) (h, jh)

(0, (j + 1)h)

(0, (j − 1)h)

n =
[
1 0

]⊤
(M, jh)

((M − 1)h, jh)

(M, (j + 1)h)

(M, (j − 1)h)

Figure 2.7: Stencil at the grid point i = 0 and 0 < j < M . The interior node (0, jh) (white)
depends on neighboring nodes.

We recall the standard finite difference operators. Let ∆+ denote the forward difference
operator, and ∆− the backward difference operator:

∆+ui = ui+1 − ui = hux|ih +
h2

2
uxx|ih +O(h3),

∆−ui = ui − ui−1 = hux|ih −
h2

2
uxx|ih +O(h3).

Let ∆+
x denote the forward difference operator in the x-direction. Applying it to u0,j,

we get

∆+
x u0,j = u1,j − u0,j = hux|0,j +

h2

2
uxx|0,j +O(h3). (2.13)

Rewriting,

−ux(0, jh) = −1

h
∆+

x u0,j +
h

2
uxx|0,j +O(h2). (2.14)

Now, since the point (0, jh) lies on the boundary, we cannot directly apply a second-
order centered difference for uxx (as it would require u−1,j). However, assuming u is smooth,
we use the PDE itself to substitute:

uxx|0,j = −f0,j − uyy|0,j = −f0,j −
1

h2
δ2yu0,j +O(h2). (2.15)

Substituting this into the previous expression:

−ux(0, jh) = −1

h
∆+

x u0,j −
h

2
f0,j −

1

2h
δ2yu0,j +O(h2). (2.16)

Replacing ux with the Neumann condition and dropping higher-order terms gives the
discrete boundary condition:

−1

h
∆+

x u0,j −
1

2h
δ2yu0,j =

h

2
f0,j + g0,j. (2.17)
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Expanding the operators, this becomes:

−2(u1,j − u0,j) + (2u0,j − u0,j+1 − u0,j−1) = h2f0,j + 2hg0,j, (2.18)
⇒ 4u0,j − 2u1,j − u0,j+1 − u0,j−1 = h2f0,j + 2hg0,j. (2.19)

The corresponding stencil is shown in Fig. 2.7. A similar strategy can be applied at
the opposite boundary (i = M), using a backward difference in the x-direction instead. The
resulting system is slightly modified and is left as an exercise.

Let us now consider the consistency error. The local truncation error at the boundary
point (0, jh) is given by

Rh|0,j := −1

h
∆+

x u0,j −
1

2h
δ2yu0,j − g0,j −

h

2
f0,j. (2.20)

Using Taylor expansions, we get

Rh|0,j = −
(
ux +

h

2
uxx +O(h2)

)
0,j

− h

2

(
uyy +O(h2)

)
0,j

− g0,j −
h

2
f0,j

= (−ux − g)0,j +
h

2
(−uxx − uyy − f)0,j +O(h2).

Since ux = −g and −∆u = f at (0, jh), the truncation error vanishes up to O(h2), confirming
second-order consistency.

Corner Boundary Grid Point

Now, let us examine the corner case. Consider the point (0, 1), corresponding to i = 0
and j = M (see Fig. 2.8). Along the edge x = 0, the Neumann condition is −ux = g since
the outward normal is n =

[
−1 0

]⊤. Along y = 1, the condition becomes uy = g since
n =

[
0 1

]⊤. At the corner, the normal derivative is not well-defined, so we use the average of
the two directional conditions.

n =

[
−1
0

]

n =

[
0
1

]

(0,Mh) (h,Mh)

(0, (M−1)h)

Figure 2.8: Stencil at the grid point i = 0 and j = M . The corner node (0,Mh) (white)
depends on neighboring nodes.

Let ∆−
y denote the backward difference in the y-direction. Then,

1

h
∆−

y u0,M = uy|0,M − h

2
uyy|0,M +O(h2) ⇒ uy|0,M =

1

h
∆−

y u0,M +
h

2
uyy|0,M +O(h2). (2.21)
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Similarly, using the forward difference ∆+
x in the x-direction:

1

h
∆+

x u0,M = ux|0,M +
h

2
uxx|0,M +O(h2) ⇒ −ux|0,M = −1

h
∆+

x u0,M +
h

2
uxx|0,M +O(h2).

(2.22)

Averaging both expressions gives:

2g0,M =
1

h

(
∆−

y u0,M −∆+
x u0,M

)
+

h

2
(uxx + uyy)0,M +O(h2). (2.23)

Replacing the second derivatives using the PDE −∆u = f and dropping higher-order
terms:

2g0,M =
1

h
(u0,M − u0,M−1 − u1,M + u0,M)− h

2
f0,M . (2.24)

Simplifying,

2u0,M − u0,M−1 − u1,M =
h2

2
f0,M + 2hg0,M . (2.25)

The local truncation error at the corner point is given by:

Rh|0,M = −
(
ux +

h

2
uxx +O(h2)

)
0,M

+

(
uy −

h

2
uyy +O(h2)

)
0,M

− h

2
f0,M − 2g0,M

= −h

2
(uxx + uyy + f)0,M + (uy − g)0,M − (ux + g)0,M +O(h2).

Again, using the PDE and the Neumann boundary conditions at (0,Mh), we conclude
that the scheme is consistent with order O(h2).

So far, we have not discussed the stability of the method. As seen in the previous
section, the notion of stability is closely tied to the well-posedness of the underlying PDE.
However, Eq. (2.10) does not have a unique solution: if u is a solution, then so is u+ c for any
constant c ∈ R.

Introducing a notion of stability without using function space theory is challenging.
We may revisit this later from a more analytical perspective. In the meantime, it is worth
pondering: with respect to which norm does the scheme exhibit stability?

Now, let us discuss the implementation of the method. One of the key differences from
the Dirichlet case is that our number of unknowns increases, since the boundary values are also
treated as unknowns. Thus, if

Au = f

is the system of equations, then A ∈ R(M+1)2×(M+1)2 and u, f ∈ R(M+1)2 .

For the interior grid points, the structure of the matrix remains the same. The addi-
tional rows and columns arise from the Neumann boundary conditions at i = 0, i = M , j = 0,
and j = M . Looking at Figs. 2.7 and 2.8, we observe that:

− The unknowns at i = 0 depend on values at i = 1 (via forward difference).
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− Similarly, values at i = M depend on i = M − 1 (via backward difference).

Let the vector of unknowns at i = 0 be

u0 =
[
u0,0 u0,1 . . . u0,M

]⊤
,

and similarly define the right-hand side vector f0. The Neumann boundary stencil gives, for
j = 1, . . . ,M − 1,

4u0,j − 2u1,j − u0,j+1 − u0,j−1 = h2f0,j + 2hg0,j.

At the corners:

- For (i, j) = (0, 0):

2u0,0 − u1,0 − u0,1 = h2/2f0,0 + 2hg0,0,

- For (i, j) = (0,M):

2u0,M − u1,M − u0,M−1 = h2/2f0,M + 2hg0,M .

We can now collect the stencil coefficients for u0 into a matrix:

DN,1 =


2 −1

−1 4 −1
. . . . . . . . .

−1 4 −1
−1 2

 ∈ R(M+1)×(M+1),

and the corresponding right-hand side:

f0 =


h2/2f0,0 + 2hg0,0

h2f0,1 + 2hg0,1
...

h2f0,M−1 + 2hg0,M−1

h2/2f0,M + 2hg0,M

 .

The coupling to the neighboring column u1 comes from:

DN,2 = diag (−1,−2, . . . ,−2,−1) ∈ R(M+1)×(M+1).

So, the boundary system at i = 0 becomes:

DN,2u1 +DN,1u0 = f0.

The analogous structure holds at the right boundary:

DN,1uM +DN,2uM−1 = fM .
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Now, comes the inner grid points, i.e., i = 1, 2, . . . ,M − 1. For the grid point (i, 0) and
(i,M) we need to use Inner Grid Points method. Here the equation would look like

4ui,0 − 2ui,1 − ui−1,0 − ui+1,0 = h2fi,0 + 2hgi,0,

and similarly for j = M

4ui,M − 2ui,M−1 − ui−1,M − ui+1,M = h2fi,M − 2hgi,M .

For j = 1, 2, . . . ,M − 1 we use the five-point stencil and hence for ui we get the system of
equations as

−Iui−1 +DN,3ui − Iui+1 = fi,

where I is a (M + 1)× (M + 1) identity matrix and

DN,3 =


4 −2

−1 4 −1
. . . . . . . . .

−1 4 −1
−2 4

 ∈ R(M+1)×(M+1).

The full block structure of the matrix A is:

A =


DN,1 DN,2

−I DN,3 −I
. . . . . . . . .

−I DN,3 −I
DN,2 DN,1

 .

Let us now express A using Kronecker products:

A = A1 +A2 +A3 +A4,

where: A1 = A1,1 ⊗DN,3,A2 = A2,2 ⊗ I,A3 = A3,3 ⊗DN,1, and A4 = A4,4 ⊗DN,2.

The matrix blocks Ai,i are defined as follows (all of size (M + 1)× (M + 1)):

A1,1 =


0 0 · · · 0 0
0 1 · · · 0 0
...

... . . . ...
...

0 0 · · · 1 0
0 0 · · · 0 0

 , A2,2 =


0 0 0 · · · 0

−1 0 −1 · · · 0

0 −1 0
. . . ...

... . . . . . . . . . −1
0 · · · 0 −1 0

 , A3,3 =


1 0 0 · · · 0
0 0 0 · · · 0

0 0
. . . . . . ...

...
... . . . 0 0

0 0 · · · 0 1

 ,

and

A4,4 =


0 1 0 · · · 0
0 0 0 · · · 0

0 0
. . . . . . ...

...
... . . . 0 0

0 0 · · · 1 0


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Compatibility condition. Since the Poisson problem with pure Neumann boundary
conditions is solvable only if the right-hand side satisfies a compatibility condition, the discrete
system must fulfill

M∑
i=0

M∑
j=0

h2fi,j =
∑

boundary nodes

(
2hgi,j

)
,

where at the corners both boundary flux contributions are included. Equivalently, A is singular
with a one-dimensional nullspace (the constant vector), and one must either enforce a mean-zero
condition or fix one degree of freedom to obtain a unique solution.

2.2.2 Non-Rectangular Domains

Until now we have dealt with “good” domains—those having a nice geometrical structure such
as a square. The ideas can, of course, be extended to rectangular domains as well. However, in
practice we may encounter more complicated domains (see Fig. 2.9). In such cases, the main
difficulty arises in computing the values at grid points located near the boundary.

Consider the Dirichlet problem, Eq. (1.4), defined on a simply connected domain1 Ω.

× × × × × × ×

× ×

× ×

× ×

× × × × ×

Figure 2.9: Non-square domain. Boundary nodes are denoted by ◦, nodes adjacent to boundary
nodes are denoted by ×, and inner nodes by •.

If we cover the domain with a grid of mesh size h, then the solution is known at the
Dirichlet nodes from the boundary condition g(x, y). We denote these boundary nodes by white
dots (◦).

The grid points marked with a cross (×) are those for which at least one neighboring
point belongs to ∂Ωh. Clearly, we cannot have the case when all neighbors belong to ∂Ωh. We
denote this set by Ω×

h .

The remaining interior grid points are denoted by black dots (•), with the corresponding
set denoted Ω•

h. Thus, we have the decomposition

Ωh = Ω•
h ∪ Ω×

h ∪ ∂Ωh.

The solution at ∂Ωh is known from the Dirichlet condition; the solution at Ω•
h can be approxi-

mated using the standard five-point stencil. Hence, the only remaining task is to compute the
solution at Ω×

h .
1Informally, a simply connected domain is an open connected set with “no holes.”
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P
Q1

h+

Q2

k+

Q3
h−

Q4

k−

Figure 2.10: Point P with uneven spacing to its neighbors.

Let us take a general point P ∈ Ω×
h , and let {Qi}4i=1 be its neighboring nodes, labeled

counterclockwise, with Q1 being the right neighbor. The distances from P to its neighbors are
denoted h+, h−, k+, k− (see Fig. 2.10). Here, h± correspond to x-direction distances and k± to
y-direction distances.

To approximate the Laplacian ∆u at P , we approximate uxx and uyy separately.

Approximation of uxx: Using Taylor expansion about P in the x-direction:

u(x+ h+, y) = u(x, y)|P + h+ux|P +
h2
+

2
uxx|P +O(h3),

u(x− h−, y) = u(x, y)|P − h−ux|P +
h2
−

2
uxx|P +O(h3),

where h is the maximum grid spacing in the x-direction.

Multiplying the first equation by h−, the second by h+, and adding eliminates ux:

h−u|Q1 = h−u|P + h−h+ux|P +
h−h

2
+

2
uxx|P +O(h4),

h+u|Q3 = h+u|P − h−h+ux|P +
h2
−h+

2
uxx|P +O(h4).

Adding and simplifying gives:

uxx|P =
2

h− + h+

(
u|Q1 − u|P

h+

+
u|Q3 − u|P

h−

)
+O(h), (2.26)

with a formal truncation error of O(h).

Approximation of uyy: By the same reasoning in the y-direction:

uyy|P =
2

k− + k+

(
u|Q2 − u|P

k+
+

u|Q4 − u|P
k−

)
+O(k), (2.27)

where k is the maximum grid spacing in the y-direction.

Discrete PDE at P : Combining (2.26) and (2.27), the PDE can be approximated at
P by:

− 2

h− + h+

(
u|Q1 − u|P

h+

+
u|Q3 − u|P

h−

)
− 2

k− + k+

(
u|Q2 − u|P

k+
+

u|Q4 − u|P
k−

)
= f |P . (2.28)
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If P ∈ Ω•
h and h− = h+ = k− = k+ = h, then we recover the standard second-order

finite difference method. For Neumann boundary conditions, similar approximations can be
derived using the ideas presented in Sec. 2.2.1.

Now, we turn to the convergence of the method. For this, we require the notions of
stability and consistency.

For stability, we require that the finite difference operator Lh is stable. Stability of
Lh means that it must be: Linear, Inverse-monotone, and satisfy the comparison principle.
Linearity is straightforward to verify. We therefore move on to inverse-monotonicity. To
discuss this property, we first recall the concept of operators of general positive type.

Definition 2.22 (General Positive Type Operators). Suppose that P is a grid point
and {Qi}νi=1 are its neighboring grid points. A finite difference operator of the form

Lhu|P = α0 u|P −
ν∑

j=1

αj u|Qj
, (2.29)

is said to be of general positive type if the coefficients satisfy:

αj ≥ 0, j = 0, 1, . . . , ν, and α0 ≥
ν∑

j=1

αj. (2.30)

Theorem 2.23 (Inverse Monotonicity). Suppose that the difference operator Lh is
defined by

Lhui,j =

gi,j, for i = 0 or M, or j = 0 or M,

Lhui,j, otherwise,

where Lh is of positive type and αj > 0 for j = 0, 1, . . . , ν. Then Lh is inverse monotone.

Proof. We proceed by contradiction. Suppose there exists u such that Lhu ≥ 0 but u ̸≥ 0.
Then there exists a grid point (i0, j0) such that ui0,j0 < 0.

Since Lhu ≥ 0 and the Dirichlet boundary conditions are applied directly (implying
ui,j ≥ 0 for i, j ∈ {0,M}), the point (i0, j0) must be in the interior. Let {Qj}ν0j=1 be the
neighboring nodes of (i0, j0). By minimality, we have

ui0,j0 ≤ u|Qj
, j = 1, 2, . . . , ν0.
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From the definition of Lh,

Lhui0,j0 = α0ui0,j0 −
ν0∑
j=1

αju|Qj

≤ α0ui0,j0 −
ν0∑
j=1

αjui0,j0

= ui0,j0

(
α0 −

ν0∑
j=1

αj

)
.

From (2.30), α0 ≥
∑ν0

j=1 αj, and since ui0,j0 < 0, it follows that

Lhui0,j0 ≤ 0.

But we also have Lhui0,j0 ≥ 0 by assumption, hence

Lhui0,j0 = 0.

Equality can hold only if α0 =
∑ν0

j=1 αj. Substituting into the definition of Lh gives

ν0∑
j=1

αj

(
ui0,j0 − u|Qj

)
= 0.

Since αj > 0 and ui0,j0 − u|Qj
≤ 0 for all j, the above can hold only if

ui0,j0 = u|Qj
, j = 1, 2, . . . , ν0.

Thus, the same strict minimum value is attained at all neighboring nodes. Repeating this
argument propagates the minimum to the boundary, where u ≥ 0, leading to a contradiction.
Therefore, Lh is inverse monotone.

Now, we check whether (2.28) can be written in the form (2.29). Let u|P = u0 and
u|Qi

= ui for i = 1, 2, 3, 4. Then

Lhu0 = − 2

h− + h+

(
u1 − u0

h+

+
u3 − u0

h−

)
− 2

k− + k+

(
u2 − u0

k+
+

u4 − u0

k−

)
=

[
2

h+ + h−

(
1

h+

+
1

h−

)
+

2

k+ + k−

(
1

k+
+

1

k−

)]
u0

− 2

h+(h+ + h−)
u1 −

2

h−(h+ + h−)
u3 −

2

k+(k+ + k−)
u2 −

2

k−(k+ + k−)
u4.

The coefficients clearly satisfy the conditions for general positive type operators. Hence, Lh is
inverse monotone. It is then stable by the comparison principle, as shown next.

Corollary 2.24. The operator Lh comprising Lh at points of Ω•
h ∪ Ω×

h together with the
Dirichlet operator is stable.
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Proof. Without loss of generality, suppose Ω ⊂ {(x, y) | 0 ≤ x ≤ a}. Then the comparison
function

Φ(x, y) = 1 +
1

2
x(a− x)

is non-negative on Ω and satisfies LhΦ ≥ 1. Hence, by the comparison principle, Lh is stable.

Now, the only thing left to show is the second–order convergence of the method. We
have already seen that it is consistent with O(h2) in Ω•

h and O(h) in Ω×
h .

Corollary 2.25. The five-point approximation (2.28) to the Poisson equation with
Dirichlet boundary conditions in a general, simply connected domain Ω is second–order
convergent, provided the fourth derivatives of the exact solution are bounded in Ω.

Proof. We split the global error e into two parts:

e = e• + e×,

where e• is the error on Ω•
h and e× is the error on Ω×

h . They satisfy the discrete problems

Lhe
• =


0, on ∂Ωh,

0, on Ω×
h ,

R•
h, on Ω•

h,

Lhe
× =


0, on ∂Ωh,

R×
h , on Ω×

h ,

0, on Ω•
h,

(2.31)

where R•
h = Lhu− f on Ω•

h is O(h2) and R×
h = Lhu− f on Ω×

h is O(h).

To control e× we introduce a non-negative discrete function Ψ defined by

Ψ|P =

{
0, on ∂Ωh,

h2, on Ωh,

so that LhΨ|P = 0 for P ∈ Ω•
h (since Ψ is constant there).

If P ∈ Ω×
h , then at least one of its neighbors lies on ∂Ωh. Let Q1 be such a boundary

neighbor, so that Ψ|Q1 = 0. Using (2.30) we have

LhΨ|P = α0Ψ|P −
4∑

j=1

αjΨ|Qj

≥ h2

(
α0 −

4∑
j=2

αj

)

= h2

(
α0 −

4∑
j=1

αj

)
+ α1h

2

≥ α1h
2.

Since α1 = 2
h+(h++h−)

and h+, h− ≤ h, it follows that α1h
2 ≥ 1. If P has more than one

boundary neighbor, this lower bound is even larger. Thus LhΨ|P ≥ 1 for all P ∈ Ω×
h .
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From (2.31) and the above, we compute

Lh

(
e× − ∥R×

h ∥h,∞Ψ
)
≤ 0,

because on Ω×
h we have

Lhe
× − ∥R×

h ∥h,∞LhΨ ≤ R×
h − ∥R×

h ∥h,∞ ≤ 0.

By inverse monotonicity of Lh,

e× ≤ ∥R×
h ∥h,∞Ψ.

A similar argument applied to e× yields

|e×| ≤ ∥R×
h ∥h,∞h2.

Since ∥R×
h ∥h,∞ = O(h), this gives e× = O(h3) in the maximum norm.

Finally, e• is governed by a residual O(h2) and the stable operator Lh, hence e• = O(h2).
Since e = e• + e× and e• dominates, we conclude

e = O(h2),

establishing second–order convergence.

2.2.3 Higher-Order Discretisation

In all the examples we have studied until now, all of them are second-order convergent. But
can we achieve a higher-order discretisation, say of order four?

To answer this question, we start with the Taylor expansion formula in two dimensions.
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Theorem 2.26. Suppose that u(x, y) and all its partial derivatives of order less than or
equal to n+1 are continuous on D = {(x, y) : a ≤ x ≤ b, c ≤ y ≤ d} and let (x0, y0) ∈ D.
For every (x, y) ∈ D, there exist ξ between x and x0 and µ between y and y0 such that

u(x, y) = Pn(x, y) +Rn(x, y),

where

Pn(x, y) = u(x0, y0) +

[
(x− x0)

∂u

∂x
(x0, y0) + (y − y0)

∂u

∂y
(x0, y0)

]
+

[
(x− x0)

2

2

∂2u

∂x2
(x0, y0) + (x− x0)(y − y0)

∂2u

∂x∂y
(x0, y0)

+
(y − y0)

2

2

∂2u

∂y2
(x0, y0)

]

+ · · ·+ 1

n!

n∑
j=0

(
n

j

)
(x− x0)

n−j(y − y0)
j ∂nu

∂xn−j∂yj
(x0, y0),

and

Rn(x, y) =
1

(n+ 1)!

n+1∑
j=0

(
n+ 1

j

)
(x− x0)

n+1−j(y − y0)
j ∂ n+1u

∂xn+1−j∂yj
(ξ, µ).

The function Pn(x, y) is called the nth Taylor polynomial in two variables for the function
u about (x0, y0), and Rn(x, y) is the remainder term associated with Pn(x, y).

Now, consider the four diagonal points for (i, j) as shown in Fig. 2.11, labelled R1, R2, R3,
and R4.

P = (i, j)

R2 R1

R3 R4

Figure 2.11: The white point represents an interior grid node (i, j), and the black points are
its four nearest diagonal neighbors used in the five-point stencil.
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Using the Taylor expansion at these four points gives

u|R1 = u(x+ h, y + h) = ui,j + hux|i,j + huy|i,j +
h2

2
(uxx + 2uxy + uyy) |i,j +O(h3),

u|R2 = u(x− h, y + h) = ui,j − hux|i,j + huy|i,j +
h2

2
(uxx − 2uxy + uyy) |i,j +O(h3),

u|R3 = u(x− h, y − h) = ui,j − hux|i,j − huy|i,j +
h2

2
(uxx + 2uxy + uyy) |i,j +O(h3),

u|R4 = u(x+ h, y − h) = ui,j + hux|i,j − huy|i,j +
h2

2
(uxx − 2uxy + uyy) |i,j +O(h3).

Adding the above four equations and cancelling the third-order O(h3) terms, we get

ui+1,j+1 + ui+1,j−1 + ui−1,j−1 + ui−1,j+1 = 4ui,j + 2h2 (uxx + uyy) |(i,j) +O(h4).

Now the Laplacian −∆u can be approximated by

−∆u =
1

2h2
[4ui,j − ui+1,j+1 − ui+1,j−1 − ui−1,j−1 − ui−1,j+1] +O(h2).

Let us denote the new difference operator by L×
h , i.e.,

L×
hui,j =

1

2h2
[4ui,j − ui+1,j+1 − ui+1,j−1 − ui−1,j−1 − ui−1,j+1] .

Notice that this is a second-order consistent approximation. In the case of the Laplace
equation, we notice that this approximation also satisfies the mean-value property. Now, to
obtain a higher-order approximation we combine the newly developed five-point stencil with
the one developed in Sec. 2.1.

Let us denote the five-point stencil developed in the previous section by L+
h , i.e.,

L+
h =

δ2x + δ2y
h2

.

To obtain a fourth-order approximation, consider λL×
h + (1 − λ)L+

h for a generic λ. The local
truncation error for this method is given by

λL×
h + (1− λ)L+

h = λ

[
−∆u− h2

12

(
∂4
xu+ 6∂2

x∂
2
yu+ ∂4

yu
)
+O(h4)

]
+(1− λ)

[
−∆u− h2

12

(
∂4
xu+ ∂4

yu
)
+O(h4)

]
= −∆u− h2

12

(
∂4
xu+ ∂4

yu
)
− 6λh2

12
∂2
x∂

2
yu+O(h4).

Now, for λ = 1/3 we get

λL×
h + (1− λ)L+

h = −∆u− h2

12
∆2u+O(h4),

where ∆2u = ∂4
xu + 2∂2

x∂
2
yu + ∂4

yu. Since −∆u = f , we have −∆2u = ∆f . Therefore, we have
an order-4 consistency term.
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Remark 2.27. We have not talked about the exact form of the local truncation error. An
interested reader can use Taylor expansion to see that the O(h4) term remains the leading
term. However, for higher-order accuracy we require u ∈ C6(Ω), which demands quite high
smoothness.

Nine-Point Stencil: Let u ∈ C6(Ω). Then the nine-point stencil formula for the
Poisson equation, Eq. (2.2), is given by

L9
hui,j = f×i,j,

where

L9
hui,j =

{
ui,j, if i, j = 0 or M,

L9
hui,j, if 1 ≤ i, j ≤ M − 1,

and f×i,j = fi,j +
h2

12
∆fi,j,

and

L9
hui,j =

1

3h2

[
10ui,j −

1

2
(ui+1,j+1 + ui+1,j−1 + ui−1,j+1 + ui−1,j−1)

−2 (ui,j+1 + ui,j−1 + ui+1,j + ui−1,j)

]
.

Consistency of the method is already obvious. The stability of the method is also straight-
forward to see, as the operator is of general positive type (see Def. 2.2.2) and hence L9

h is
inverse-monotone. The next step is to show the satisfaction of the comparison lemma; for this,
we can choose the same Φ(x, y) as in Fig. 2.5 to get the result. Hence, we have a convergent
method of order four.

However, this method has drawbacks. The matrix obtained will not be a penta-diagonal
matrix; instead, we get a nine-diagonal matrix (see Fig. 2.12). Furthermore, solving it will be
more challenging as the number of non-zero entries increases.

Columns

R
ow

s

Figure 2.12: Sparsity pattern for matrix A developed using the nine-point stencil for M = 10.

Regarding the implementation of the method, the matrix A will have the structure

−D1ui−1 +D2ui −D1ui+1, for i = 1, 2, . . . ,M − 1,

where

D1 =


4 1 0 · · · 0
1 4 1 · · · 0
...

...
... . . . ...

0 0 0 · · · 4

 , D2 =


20 −4 0 · · · 0

−4 20 −4 · · · 0
...

...
... . . . ...

0 0 0 · · · 20

 .
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The right-hand side f will have an extra term to incorporate ∆fi,j. The boundary conditions
can be applied in the same way as before. For Neumann boundary conditions or irregular
domains, the ideas developed in the previous examples remain applicable.

2.3 Summary
In this chapter, we examined the finite difference method (FDM) for second-order elliptic equa-
tions in two dimensions. The ideas developed here extend naturally to three dimensions. The
convergence theory remains unchanged, and the approach can also be generalized to Neumann
boundary conditions, irregular domains, and higher-order discretizations.

If, instead of the Poisson equation, we consider a more general elliptic operator such as
the convection–diffusion equation

−ε∆u+ b · ∇u = f in Ω, (2.32)

with appropriate boundary conditions, the implementation of the FDM follows the same prin-
ciples. In this case, in addition to approximating the Laplacian ∆, we must also approximate
the gradient ∇u. This introduces an additional challenge. An excellent survey on this topic is
given by Stynes [19].

Despite the development of modern numerical methods, the FDM remains popular in
the scientific community because of its simplicity. However, it has certain limitations. One
major drawback is the regularity assumption on the solution. The numerical analysis of the
FDM relies on Taylor expansions of u, and achieving the expected order of accuracy typically
requires u ∈ C4(Ω). In practice, solutions may lack such high smoothness, making it necessary
to use methods that relax this assumption.

Another difficulty arises when incorporating Neumann boundary conditions or handling
irregular domains. These cases require special treatment, often involving modifications to either
the system matrix A or the right-hand side vector f .

Also, suppose we want to find the solution at a point between the grid points, say
(i+0.5, j+0.7), then in this case, one either needs to do re-grid or use interpolation techniques,
leading to further difficulties.

This naturally leads to the question: do we have better methods? In the next part of
the course, we will explore approaches designed to overcome these limitations.
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Chapter 3

Introduction to Functional Analysis

In the last chapter we noted that the analysis of the Finite Difference Method relies heavily
on Taylor expansions, which require high differentiability of the solution, also referred to as
smoothness. Let us look at some examples to see what smoothness actually means. Define

f0(x) =

{
−1 if − 1 ≤ x < 0,

1 if 0 ≤ x ≤ 1,
f1(x) = |x|, f2(x) = x|x|, f3(x) = x2|x|,

on the interval [−1, 1]. We now examine the behaviour of the functions {fi(x)}3i=0 at the point
x = 0:

1. f0(x) is not continuous at x = 0.

2. f1(x) is continuous at x = 0, but is not differentiable there.

3. f2(x) is continuous and differentiable at x = 0, but its second derivative does not exist at
that point.

4. f3(x) is twice differentiable at x = 0, but not three times differentiable.

If we look at Fig. 3.1 at (0, 0), we see what is meant by smoothness. As i increases, the graphs
of the functions look progressively smoother.

But why do we need smoothness, or even continuity, in the first place? In real-world
applications such as stock pricing, the price of a share may exhibit very sharp changes. For
example, the value of a stock can drop from $100 to $0 and then rise back to $100 within a
short period of time. Like many other phenomena, this too can be modeled mathematically.
The evaluation of an option price is described by the Black–Scholes equation, named after the
American economists Fischer Sheffey Black and Myron Scholes. It is given by

∂V

∂t
+

σ2

2
S2∂

2V

∂S2
+ rS

∂V

∂S
− rV = 0,

where V (t, S) is the price of the option as a function of stock price S and time t, r is the
risk-free interest rate, and σ is the volatility of the stock. As mentioned, the solution V (t, S)
will, in general, not be a smooth function, and hence we need to study a more general class of
functions together with their properties.
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−1 0 1

−1

0

1

x

f0(x)
f1(x) = |x|
f2(x) = x|x|
f3(x) = x2|x|

Figure 3.1: Smoothness of the functions {fi(x)}3i=0 around x = 0.

Figure 3.2: Fischer Black (11 January 1938 – 30 August 1995, left) and Myron Scholes (1 July
1941–, right).

This chapter is intended as an introduction to Functional Analysis. The main topics to
be covered include measurable functions, function spaces, weak derivatives, and their properties.
It will present the most important concepts required for the study of PDEs, but it is by no
means a complete text. For a deeper understanding of Functional Analysis, I recommend the
references [14, 13].

3.1 Function Spaces

3.1.1 Banach Spaces

Until now we have looked at some very particular classes of functions such as C(Ω) and C4(Ω),
but now we move towards a more general notion. Let us denote such a space by X. We start
with the most fundamental structure, referred to as a vector space.
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Definition 3.1. (Vector Space) A vector space or a linear space over R (whose elements
are called scalars) is a set X, whose elements are called vectors, equipped with two
operations: addition and scalar multiplication, such that the following properties hold:

• Addition: (x, y) ∈ X ×X 7→ x+ y ∈ X such that for all x, y, z ∈ X:
◦ x+ y = y + x (Commutativity).
◦ x+ (y + z) = (x+ y) + z (Associativity).
◦ There exists a unique vector 0 ∈ X, called the zero vector, such that x+0 = x

for all x ∈ X.
◦ For all x ∈ X there exists −x ∈ X such that x+ (−x) = 0.

• Scalar Multiplication: (λ, x) ∈ R×X 7→ λx ∈ X such that for all λ, β ∈ R and
x, y ∈ X:

◦ For all x ∈ X, 1 · x = x, where 1 is the multiplicative identity of R.
◦ λ(βx) = (λβ)x.
◦ (λ+ β)x = λx+ βx.
◦ λ(x+ y) = λx+ λy.

Example 3.2. 1. The set of real numbers R is a vector space over R.
2. Rd is a vector space over R.
3. The set of integers Z with scalars in R is not a vector space, since for λ =

√
3 and

any x ∈ Z, we have λx /∈ Z.

After defining vector spaces, we would like to measure distances in such spaces, which
leads to the notion of normed spaces. We have already seen the notation of a norm, but we
revisit it here.

Definition 3.3. (Normed Space) Let X be a real vector space. A mapping ∥·∥ : X → R
is called a norm on X if

1. ∥x∥ ≥ 0 for all x ∈ X (Non-negativity).
2. ∥x∥ = 0 ⇔ x = 0 (Definiteness).
3. ∥λx∥ = |λ|∥x∥ for all x ∈ X and λ ∈ R (Homogeneity).
4. ∥x+ y∥ ≤ ∥x∥+ ∥y∥ for all x, y ∈ X (Triangle Inequality).

The pair
(
X, ∥ · ∥

)
is called a normed space.

Example 3.4. 1. The set of real numbers R with the absolute value | · | is a normed
space.

2. The space C[a, b] is a normed space with ∥x∥ = maxt∈[a,b] |x(t)| for x ∈ C[a, b].
3. If ∥ · ∥ is defined by ∥x∥ = 0 for all x ∈ X, then

(
X, ∥ · ∥

)
is not a normed space.

We saw the importance of norms in the previous chapter, as they allow us to quan-
tify errors. In Numerical Analysis in general, approximations arise that lead to sequences of
numbers, and we hope that these sequences converge to the true solution. Before studying con-
vergence of sequences, however, we introduce a more general concept: the notion of a Cauchy
sequence, named after the French mathematician Augustin-Louis Cauchy.
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Figure 3.3: Augustin-Louis Cauchy (21 August 1789 – 23 May 1857).

Definition 3.5. (Cauchy Sequence) A sequence {xn}n∈N ⊂ X is called a Cauchy
sequence if for all ε > 0 there exists n0(ε) ∈ N such that

∥xm − xn∥ < ε ∀m,n > n0(ε).

In other words, a sequence is said to be Cauchy if for any ε > 0 we can find an index
n0 (depending on ε) such that all terms of the sequence beyond this index are within ε of each
other.

Definition 3.6. (Convergent Sequence) A sequence {xn}n∈N ⊂ X is said to converge
to x ∈ X if for all ε > 0 there exists n0(ε) ∈ N such that

∥xn − x∥ < ε ∀n > n0(ε).

In this case we write xn → x as n → ∞.

Example 3.7. In Real Analysis a classic result tells us that every convergent sequence
is a Cauchy sequence, but the converse is not true in general [15, Theorem 3.11].
For instance, consider X = P[0, 1], the space of all polynomials on [0, 1], equipped with
the supremum norm

∥p∥∞ = max
x∈[0,1]

|p(x)|.

Define

pn(x) =
n∑

k=0

xk

k!
.

Then {pn} is a Cauchy sequence in
(
C[0, 1], ∥ · ∥∞

)
, since pn → ex uniformly on [0, 1].

However, ex is not a polynomial, and hence {pn} does not converge in X = P[0, 1].
This illustrates that Cauchy sequences are more general than convergent sequences: a
Cauchy sequence may fail to converge if the space is not complete. If we enlarge the space
to C[0, 1], then the same sequence {pn} does converge (to ex). This observation motivates
the notion of completeness.

Definition 3.8. (Complete Space) A normed space
(
X, ∥·∥

)
is called complete if every

Cauchy sequence in X converges to an element of X.
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The notion of a complete space was introduced by Stefan Banach, and hence giving rise
to Banach Spaces.

Figure 3.4: Stefan Banach (30 March 1892 – 31 August 1945).

Definition 3.9. (Banach Space) A complete normed space is called a Banach space.

Example 3.10. The Euclidean space Rd is a Banach space with the Euclidean norm

∥x∥2 =

√√√√ d∑
i=1

|xi|2.

This follows since Rd is finite-dimensional and every finite-dimensional normed space is
complete.

Lemma 3.11. The space of continuous functions C[a, b] is a Banach space with

∥x∥∞ = max
t∈[a,b]

|x(t)|.

Proof. Let {xn}n∈N be a Cauchy sequence in C[a, b]. By definition, for every ε > 0, there exists
n0 ∈ N such that

∥xm − xn∥∞ < ε ∀m,n ≥ n0.

This means
|xm(t)− xn(t)| < ε ∀t ∈ [a, b], ∀m,n ≥ n0.

Fix t0 ∈ [a, b]. Then {xn(t0)}n∈N is a Cauchy sequence in R, hence convergent (since R is
complete). Define

x(t) = lim
n→∞

xn(t), t ∈ [a, b].

We now claim that xn → x uniformly.

Indeed, given ε > 0, choose n0 as above. Then for all m ≥ n0 and all t ∈ [a, b],

|xm(t)− x(t)| ≤ lim
n→∞

|xm(t)− xn(t)| ≤ ε.

Taking maximum over t, we get
∥xm − x∥∞ ≤ ε.

Thus xn → x in the ∥ · ∥∞ norm.
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Finally, since xn converges uniformly to x and each xn is continuous, the limit x is
continuous (Uniform limit theorem, [15, Theorem 7.12]). Therefore x ∈ C[a, b].

Hence C[a, b] is complete under ∥ · ∥∞.

Lemma 3.12. The space of continuous functions C[0, 2] is not a Banach space with

∥x∥1 =
∫ 1

0

|x(t)| dt.

Proof. We construct a Cauchy sequence in C[0, 2] that does not converge in C[0, 2] under ∥ · ∥1.

Define

xn(t) =


0 t ∈ [0, 0.5],

t− 0.5

an − 0.5
t ∈ [0.5, an],

1 t ∈ [an, 2],

an = 0.5 +
1

n
.

Graphically, xn is a continuous function that rises linearly from 0 at t = 0.5 to 1 at t = an, and
stays constant outside this interval (see Fig. 3.5).

0 1/2 5/6 1

0

1

x
n
(t
)

x2(t)
x3(t)

Figure 3.5: Cauchy sequence of continuous functions in (C[0, 2], ∥ · ∥1).

Now consider

∥xm − xn∥1 =
∫ 1

0

|xm(t)− xn(t)| dt.

The difference is nonzero only in the interval [0.5,max{am, an}]. A careful computation shows

∥xm − xn∥1 =
1

2

∣∣∣∣ 1m − 1

n

∣∣∣∣ .
Hence, given ε > 0, if we choose n0 > 1/2ε, then for m,n ≥ n0, we get

∥xm − xn∥1 < ε,
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so {xn} is a Cauchy sequence in (C[0, 1], ∥ · ∥1).

Non-convergence: Suppose xn → x in ∥ · ∥1 for some x ∈ C[0, 1]. But pointwise, we
see

xn(t) →

{
0 t ∈ [0, 0.5),

1 t ∈ (0.5, 1],

which is a discontinuous step function.

Since x would have to equal this pointwise limit almost everywhere, the candidate limit
is not continuous. Hence x /∈ C[0, 1].

Therefore {xn} does not converge in C[0, 1] under ∥ ·∥1, and C[0, 1] is not complete with
this norm.

In the last example, if we take the norm

∥x∥2 =

√∫ 1

0

|x(t)|2dt,

then the same argument will show that C[a, b] is not a Banach space.

From the examples that we have seen, we have noted that we have certain spaces which
form a Banach space with respect to a norm but not with others. As noted we like complete
spaces as they give us the limit and hence now the question is can we create a “bigger” space
which is a completion of C[a, b].

3.1.2 Space of Measurable Functions

Definition 3.13. (Lp Measurable Functions) Let Ω ⊂ Rd be an open and bounded
domain. We denote by Lp, 1 ≤ p < ∞, the set of measurable functions f : Ω → R for
which ∫

Ω

|f(x)|p dx < ∞.

Similarly, the set of measurable functions f : Ω → R satisfying

ess sup {|f(x)| : x ∈ Ω} < ∞,

is denoted by L∞(Ω). Then Lp(Ω), p ∈ [1,∞], is a real vector space with the norm

∥f∥p =
(∫

Ω

|f(x)|p dx
)1/p

, for 1 ≤ p < ∞, and ∥f∥∞ = ess sup {|f(x)| : x ∈ Ω} ,

respectively.

Now, to check if Lp(Ω) is a Banach space, we first need to verify whether ∥ · ∥p is a
norm. The conditions of non-negativity and homogeneity are straightforward. For definiteness,

57



MA643 - Numerical Analysis of Partial Differential Equations Summer Semester 2025

we identify functions that are equal up to a set of measure zero. This identification is important,
since if M ⊂ Ω has measure zero, then∫

Ω

|f(x)|p dx = 0 ⇒ f(x) = 0 for x ∈ Ω \M.

The last property is the triangle inequality, which in the case of Lp spaces is known as the
Minkowski inequality. Its proof follows from another important result, namely Hölder’s in-
equality.

Fun Fact: Hölder’s inequality was actually proven by the British mathematician
Leonard James Rogers but Hölder cites Rogers work and reproves it.

Figure 3.6: Otto Hölder (22 December 1859 – 29 August 1937, left) and Hermann Minkowski
(22 June 1864–, 12 January 1909, right).

Lemma 3.14. (Hölder’s Inequality)[13, Proposition 6.1.1] Let 1 ≤ p < ∞ and let q
be the conjugate exponent of p, i.e.,

1

p
+

1

q
= 1,

with q = ∞ when p = 1. If f ∈ Lp(Ω) and g ∈ Lq(Ω), then

∥fg∥1 =
∫
Ω

|f(x)g(x)| dµ ≤ ∥f∥p ∥g∥q.

Remark 3.15. For p = q = 2, we recover the well-known Cauchy–Schwarz inequality.

Lemma 3.16. (Minkowski Inequality)[13, Proposition 6.1.2] Let 1 ≤ p ≤ ∞ and
f, g ∈ Lp(Ω). Then f + g ∈ Lp(Ω) and

∥f + g∥p ≤ ∥f∥p + ∥g∥p.

One of the important properties of these Lp spaces is that they are contained in one
another, a property known as embedding.

Lemma 3.17. (Embedding Lemma) Let 1 ≤ p < q ≤ ∞. Then

Lq(Ω) ⊂ Lp(Ω),

and
∥f∥p ≤ µ(Ω)

1
p
− 1

q ∥f∥q.
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Remark 3.18. The above embedding lemma states that if p < q, then Lq(Ω) ⊂ Lp(Ω). In
particular, if a function is Lq-integrable, then it is also Lp-integrable.

Example 3.19. In the above lemma if Ω is not bounded, then the result does not hold.
Consider f(x) = 1

1+|x| , x ∈ R. Then

∥f∥1 =
∫
R

1

1 + |x|
dx = 2

∫ ∞

0

1

1 + x
dx = 2 [log(1 + x)]∞0 = ∞.

Hence f /∈ L1(R). However,

∥f∥22 =
∫
R

1

(1 + |x|)2
dx = 2

∫ ∞

0

1

(1 + x)2
dx = −2

[
1

1 + x

]∞
0

= 2 < ∞.

Thus, f ∈ L2(R).

Introduction to Measure Theory

In the above definition of a measurable function, we introduced the notion of measure. Before
delving deeper into function spaces, we take a brief detour to understand what we mean by
measure and measurable functions.

Remark 3.20. In mathematics, the concept of measure is a generalization of geometrical mea-
sures (length, area, volume). Since the idea of area is closely related to that of integration,
measure plays a fundamental role in integration theory.

Before defining a measure, we first want to characterize the subsets of a set X that can
be regarded as measurable. This leads to the notion of a σ-algebra, introduced by Émile Borel
in 1898.

Figure 3.7: Émile Borel (7 January 1871 – 3 February 1956).
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Definition 3.21. (σ-algebra) Let X be a set. A σ-algebra is a collection S of subsets
of X such that:

1. X ∈ S,
2. If A ∈ S, then AC ∈ S,
3. If Ai ∈ S for i ∈ N, then

∞⋃
i=1

Ai ∈ S.

The pair (X,S) is called a measurable space, and the members of S are called measurable
sets .

Example 3.22. 1. On any set X, S = {∅, X} is the trivial σ-algebra.
2. The power set of X is the largest possible σ-algebra.
3. The Borel σ-algebra on R is the smallest σ-algebra containing all open intervals of

R.

Now that we have the notion of measurable sets, we can introduce the concept of a
measure.

Definition 3.23. (Measure) Let (X,S) be a measurable space. A measure on X (de-
noted by µ) is a function

µ : S → [0,∞],

satisfying:
1. µ(∅) = 0,
2. µ(E) ≥ 0 for all E ∈ S,
3. (Countable additivity) For any sequence {Ek}∞k=1 of pairwise disjoint sets in S,

µ

(
∞⋃
k=1

Ek

)
=

∞∑
k=1

µ(Ek).

The triple (X,S, µ) is called a measure space.
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Example 3.24. 1. Counting Measure: Let X be a non-empty set and let S be the
collection of all subsets of X (the power set, which is a σ-algebra). For E ⊂ X,
define

µ(E) =

{
number of elements of E, if E is finite,
∞, if E is infinite.

This defines a measure called the counting measure.
2. Dirac Measure: Let (X,S) be as above and let x0 ∈ X be a fixed point. For

E ⊂ X, define

µ(E) =

{
1, if x0 ∈ E,

0, otherwise.

This defines a measure on X called the Dirac measure. Thus, the same measurable
space can carry different measures.

After these examples of measures, we now turn to measurable functions.

Definition 3.25. (Measurable Function) Let f : X → R be a given function. It is
said to be a measurable function if for all α ∈ R we have

f−1
(
(α,∞)

)
= {x ∈ X : f(x) > α}

is a measurable set.

Example 3.26. 1. Indicator Function: Let (X,S) be a measure space and E ∈ S.
The indicator function is given by

χE(x) =

{
1 if x ∈ E,

0 if x /∈ E.

Here, for α > 0 we have {x ∈ X : χE(x) > α} equal to E, ∅, or X.
2. Simple Functions: Finite linear combinations of indicator functions are called

simple functions :

φ(x) =
n∑

i=1

aiχEi
(x), Ei ∈ S, ai ∈ R.

We will discuss them later in detail.
3. Continuous Functions: Continuous functions are measurable since the inverse

image of an open set is open, and hence belongs to the Borel σ-algebra.

One of the most important classes of measures is the Lebesgue measure, named after
the French mathematician Henri Léon Lebesgue. This is the generalization we mentioned at
the beginning of this section.

Let I = [a, b) be an interval whose length is denoted by ℓ(I). For any subset E ⊂ R,

61



MA643 - Numerical Analysis of Partial Differential Equations Summer Semester 2025

Figure 3.8: Henri Léon Lebesgue (28 June 1875 – 26 July 1941).

the Lebesgue outer measure, denoted by µ∗(E), is defined as

µ∗(E) = inf
∞∑
n=1

ℓ(In),

where the infimum is taken over all countable collections of intervals with E ⊂
⋃∞

n=1 In.

A set E is said to be Lebesgue measurable if it satisfies the Carathéodory criterion,
i.e.,

µ∗(A) = µ∗(A ∩ E) + µ∗(A ∩ Ec),

for every set A ⊂ R. In this case, the outer measure µ∗ restricted to measurable sets is called
the Lebesgue measure µ.

In the case E ⊂ Rd, the outer measure is defined as

µ∗(E) = inf

{∑
B∈C

vol(B)

}
,

where C is a countable collection of boxes covering E, and vol(B) denotes the volume of the
box. If E satisfies the Carathéodory criterion, then µ∗ defines the Lebesgue measure on Rd.

Remark 3.27. A set E ⊂ Rd is said to have measure zero if for every ε > 0 there exists a
countable collection of d-dimensional rectangles {Ik} such that

1. E ⊂
⋃∞

k=1 Ik,

2.
∑∞

k=1 µ(Ik) < ε.

That is, for every ε > 0 we can cover E with a collection of intervals whose total measure is
smaller than ε.

Let us recap what we have done so far: we introduced the notion of a σ-algebra, then
defined measure, and more importantly, the Lebesgue measure. The reason we studied all this
is to generalize the usual notion of integration.
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Definition 3.28. (Simple Function) Let (X,S, µ) be a measure space and let E ∈ S.
The characteristic function of E, denoted by χE, is defined by

χE(x) =

{
1 if x ∈ E,

0 if x /∈ E.

A simple function is a function s : X → R of the form

s(x) =
m∑
i=1

αiχAi
(x),

where αi ∈ R and Ai ∈ S for 1 ≤ i ≤ m.

We define the integral of a non-negative simple function s(x) by∫
µ

s dµ :=
m∑
i=1

αiµ(Ai).

Lemma 3.29. Let (X,S) be a measurable space and let f : X → R be a non-negative
measurable function. Then there exists a sequence {sn} of non-negative simple functions
such that

0 ≤ sn ≤ sn+1 ≤ f, ∀n,

and
lim
n→∞

sn(x) = f(x) ∀x ∈ X.

This means that every non-negative measurable function can be approximated by non-
negative simple functions. Hence, we define the integral as∫

X

f dµ := sup

{∫
X

s dµ : s simple, 0 ≤ s ≤ f

}
.

We are now in a position to define the integrability of a general measurable function f .

Definition 3.30. (Integrable Function) Let (X,S, µ) be a measure space and let
f : X → R be a measurable function. Then f is said to be integrable if∫

X

|f | dµ < ∞,

where
|f | = f+ + f−, f+ = max{f, 0}, f− = −min{f, 0}.

In this case, we define ∫
X

f dµ :=

∫
X

f+ dµ−
∫
X

f− dµ.
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Example 3.31. 1. If µ is the counting measure, then any real-valued function f on
N is measurable and can be identified with a sequence {an}, where f(n) = an. In
this case, ∫

N
f dµ =

∞∑
n=1

an.

2. If µ is the Dirac measure concentrated at x0 ∈ X, then for any function f : X → R,∫
X

f dµ = f(x0).

Remark 3.32. If E is a set of measure zero, then

∫
E

|f | dµ = 0.

Examples of sets of measure zero include any finite set of points, or any countable set such as
Q ∩ [0, 1]. This observation is important: suppose we have an integrable function defined on
a domain Ω. If we replace Ω with Ω∗ := Ω \ E, where E has measure zero, then the integral
remains unchanged.

In particular, the limit obtained in Lemma 3.12 is a measurable and integrable function,
since the discontinuity occurs only at finitely many points (a set of measure zero).

Finally, we recall the notion of the essential supremum, which is used in the definition
of the ∥ · ∥∞ norm.

Definition 3.33. (Essential Supremum) Let f be a measurable function. The essen-
tial supremum of f , denoted by ess sup(f), is defined as

ess sup(f) = inf {α ∈ R : f ≤ α a.e.} .

We have now completed a brief introduction to measure theory, focusing only on the
results essential for our purposes. The key points included: the notion of a measure, measurable
functions, and most importantly Lebesgue integration. A good introduction to Measure Theory
can be found in [20].

3.1.3 Dual Space

We have defined what is a normed space, a Banach space, and even looked at a very important
class of Banach spaces. Now we look at another space, a space of functions (more precisely,
functionals) that act on the space X.
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Definition 3.34. (Linear Functional) Let (X, ∥ · ∥X) be a normed space. A mapping
g : X → R is called linear if

g(αx+ βy) = αg(x) + βg(y) ∀α, β ∈ R, x, y ∈ X.

A linear mapping g : X → R is continuous if there exists a constant C > 0 such that

|g(x)| ≤ C∥x∥X ∀x ∈ X.

Such a mapping g is referred to as a linear functional.

The definition of continuity might appear similar to the definition of boundedness. In
fact, in Functional Analysis they are equivalent.

Remark 3.35. On finite-dimensional spaces all linear functionals are continuous, but in infinite-
dimensional spaces this is not necessarily true.

Definition 3.36. (Dual Space) Let us define the sum of two continuous linear func-
tionals g1 and g2, and the multiplication of a continuous linear functional g with a real
number α, by

(g1 + g2)(x) = g1(x) + g2(x) and (αg)(x) = αg(x), α ∈ R, x ∈ X.

Then the set of all continuous linear functionals forms a linear space, called the dual
space X∗. If g ∈ X∗, we denote g(x) by ⟨g, x⟩ for x ∈ X.

Lemma 3.37. The set X∗ of continuous linear functionals x 7→ ⟨g, x⟩ on X is a Banach
space with respect to the norm

∥g∥X∗ := sup
0̸=x∈X

|⟨g, x⟩|
∥x∥X

.

Proof. We need to show two things: (1) ∥ · ∥X∗ is a norm, and (2) (X∗, ∥ · ∥X∗) is complete.

Step 1: ∥ · ∥X∗ is a norm. Clearly ∥g∥X∗ ≥ 0 for g ∈ X∗. Also,

∥g∥X∗ = 0 ⇔ ⟨g, x⟩ = 0 ∀x ∈ X ⇔ g = 0.
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For homogeneity, let λ ∈ R:

∥λg∥X∗ = sup
0 ̸=x∈X

|⟨λg, x⟩|
∥x∥X

= sup
0 ̸=x∈X

|λ⟨g, x⟩|
∥x∥X

= |λ| sup
0̸=x∈X

|⟨g, x⟩|
∥x∥X

= |λ|∥g∥X∗ .

For the triangle inequality:

∥g1 + g2∥X∗ = sup
0̸=x∈X

|⟨g1 + g2, x⟩|
∥x∥X

= sup
0̸=x∈X

|⟨g1, x⟩+ ⟨g2, x⟩|
∥x∥X

≤ sup
0 ̸=x∈X

|⟨g1, x⟩|
∥x∥X

+ sup
0̸=x∈X

|⟨g2, x⟩|
∥x∥X

= ∥g1∥X∗ + ∥g2∥X∗ .

Hence ∥ · ∥X∗ is a norm.

Step 2: X∗ is complete. Let {gn}n∈N be a Cauchy sequence in X∗. Then for all ε > 0, there
exists n0(ε) ∈ N such that

∥gm − gn∥X∗ < ε for all m,n > n0(ε).

Fix x ∈ X. Then

|⟨gn, x⟩ − ⟨gm, x⟩| = |⟨gn − gm, x⟩|
≤ ∥gn − gm∥X∗ ∥x∥X
< ε∥x∥X .

Thus {⟨gn, x⟩}n∈N is a Cauchy sequence in R, hence convergent. Define

g(x) := lim
n→∞

⟨gn, x⟩ ∀x ∈ X.

Linearity: For α, β ∈ R and x, y ∈ X,

g(αx+ βy) = lim
n→∞

⟨gn, αx+ βy⟩

= α lim
n→∞

⟨gn, x⟩+ β lim
n→∞

⟨gn, y⟩

= αg(x) + βg(y).

Boundedness: Since every Cauchy sequence in a normed space is bounded, there exists C > 0
such that ∥gn∥X∗ ≤ C for all n. Then

|⟨gn, x⟩| ≤ ∥gn∥X∗ ∥x∥X ≤ C∥x∥X .
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Passing to the limit n → ∞, we obtain

|g(x)| ≤ C∥x∥X , ∀x ∈ X,

which shows that g is continuous.

Therefore, g ∈ X∗ and gn → g in X∗. Hence X∗ is complete, i.e., a Banach space.

Example 3.38. For 1 < p < ∞, the dual of Lp(Ω) is Lq(Ω), where q is the conjugate
exponent of p, i.e.,

1

p
+

1

q
= 1.

For p = 1, the dual of L1(Ω) is L∞(Ω), but for p = ∞ the dual space is the space of
bounded finitely additive signed measures (strictly larger than L1(Ω)).
At first glance, it may appear strange that Lq(Ω) is the dual of Lp(Ω), since Lq is the space
of q-integrable functions, whereas (Lp)∗ is the space of continuous linear functionals. In
fact, there exists an isometric isomorphism between (Lp)∗ and Lq: every g ∈ Lq induces
a functional Tg ∈ (Lp)∗ defined by

Tg(f) =

∫
Ω

f(x)g(x) dx for f ∈ Lp(Ω),

and this correspondence preserves the norm. Hence we may identify elements of (Lp)∗

with elements of Lq.

3.1.4 Hilbert Space

Until now we have discussed vector spaces and how to measure distances in them. Now, we
want to see how the elements of X interact with one another. For this, the notion of an inner
product comes.

Definition 3.39. (Inner Product and Hilbert Space) Let X be a linear space. A
mapping (·, ·) : X ×X → R is called an inner product on X if

1. (x, y) = (y, x) for all x, y ∈ X (symmetry),
2. (αx+ βy, z) = α(x, z) + β(y, z) for all x, y, z ∈ X and α, β ∈ R (linearity in the

first argument),
3. (x, x) > 0 for x ̸= 0 (positive-definiteness).

The space (X, (·, ·)) is referred to as an inner product space. An inner product also induces
a norm on X denoted by

∥x∥X =
√

(x, x).

If (X, ∥ · ∥X) is complete, then it is referred to as a Hilbert space, named after the German
mathematician David Hilbert.
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Figure 3.9: David Hilbert (23 January 1862 – 14 February 1943).

Example 3.40. 1. X = Rn is an inner product space with (·, ·) being the dot product,
i.e.,

(x, y) =
n∑

i=1

xiyi for x, y ∈ Rn.

2. X = L2(Ω). For f, g ∈ X, the inner product defined by

(f, g) =

∫
Ω

f(x)g(x) dx,

makes L2(Ω) into a Hilbert space.
3. X = C(Ω) with the inner product

(f, g) =

∫
Ω

f(x)g(x) dx

is an inner product space, but it is not a Hilbert space as it is not complete under
the induced norm.

4. X = Lp(Ω), p ̸= 2, is not an inner product space but merely a normed space.

Remark 3.41. One way to check if a normed space is induced by an inner product is to verify
the parallelogram law, i.e.,

∥f + g∥2 + ∥f − g∥2 = 2∥f∥2 + 2∥g∥2,

for all f, g ∈ X. For (Lp, ∥ · ∥p) with p ̸= 2, this law fails and hence it is not an inner product
space.

For instance, consider

f(x) =

{
1 0 ≤ x < 0.5,

0 0.5 ≤ x ≤ 1,
g(x) =

{
0 0 ≤ x < 0.5,

1 0.5 ≤ x ≤ 1.

Then ∥f∥21 = ∥g∥21 = 0.25, but ∥f + g∥21 = 1 and ∥f − g∥21 = 1. Hence, (L1, ∥ · ∥1) is not a
Hilbert space.

Remark 3.42. So far, we have looked at normed spaces, Banach spaces, inner product spaces,
and Hilbert spaces.
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• Normed spaces are the most general framework.

• Banach spaces are normed spaces that are complete.

• Inner product spaces are spaces equipped with an inner product, which induces a norm.
Hence, every inner product space is a normed space.

• Hilbert spaces are special classes of inner product spaces that are complete in the norm
induced by the inner product.

Remark 3.43. Given a normed space, if its norm comes from an inner product, then this inner
product is unique (determined by the norm) via the polarization identity.

Now, what is so nice about inner product spaces? We introduced the notion of func-
tionals in the last section. If we have a linear functional g ∈ X∗, then we can characterise its
entire action on X using only an element of X and the inner product. This is called the Riesz
Representation Theorem, named after the Hungarian mathematician Frigyes Riesz.

Figure 3.10: Frigyes Riesz (22 January 1880 – 28 February 1956).

Theorem 3.44. (Riesz Representation Theorem)[2, Theorem 2.4.2] Let X be a
Hilbert space. Then for every g ∈ X∗ there exists a unique ug ∈ X such that for all
x ∈ X,

(x, ug) = ⟨g, x⟩, ∥ug∥X = ∥g∥X∗ .

Hence, we can identify the elements of the dual space X∗ with the elements of the
Hilbert space X itself.

We have not proved any theorems here. In the following sections, if required, we will
use these results and prove them as needed.

3.2 Sobolev Spaces

Until now we have discussed integrable functions, but as we are working in a PDE setting, we
are interested in differentiable functions.

The classical notion of the derivative of a function u(x) that we are familiar with is

u′(x) = lim
h→0

u(x+ h)− u(x)

h
.
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The above definition is “local” in the sense that it describes the derivative around the point
x. However, in PDE analysis we are interested in a more global view: we want to interpret
derivatives in such a way that they belong to L2 (or more generally Lp) spaces.

To generalize the notion of derivatives, we need some preliminary notations.

Definition 3.45. (Compact Support) Let f : Ω → R be a real-valued function defined
on a domain Ω ⊆ Rd. The support of f , written as supp(f), is the closure of the set of
points in Ω where f is non-zero:

supp(f) = {x ∈ Ω : f(x) ̸= 0}.

If supp(f) is compact,a then we say that f has compact support.
aIn Rd a compact set is one which is closed and bounded. For example, [0, 1] is compact, but [0,∞)

is not compact (closed but not bounded).

Outside the support of f one can naturally extend the function by defining it to be
zero. If Ω is bounded, then saying that u has compact support in Ω is equivalent to saying that
u vanishes in a neighborhood of ∂Ω.

Example 3.46. The function f : [−1, 1] → R defined by f(x) = 1 − x2 has supp(f) =
[−1, 1], which is compact.

Definition 3.47. Let Ω ⊂ Rd. We denote by D(Ω) or C∞
0 (Ω) the set of infinitely

differentiable functions with compact support in Ω.

The space D(Ω) will be our “test function” space, which we use to generalize the notion
of derivatives.

Definition 3.48. (Locally Integrable Functions) Given a domain Ω ⊆ Rd, the set of
locally integrable functions, denoted by L1

loc(Ω), is defined as

L1
loc(Ω) = {f : f ∈ L1(K) for all compact K ⊂ Ω}.

Remark 3.49. Given f ∈ L1
loc(Ω), one can always define a linear functional on D(Ω) by

Tf (φ) =

∫
Ω

f(x)φ(x) dx, φ ∈ D(Ω).

Such functionals are called distributions.
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Example 3.50. 1. Any continuous function f defined on Ω belongs to L1
loc(Ω), since

continuous functions are bounded on compact sets, and compact subsets of Ω have
finite measure.

2. Let x ∈ Rd and define
δx(φ) = φ(x) ∀ φ ∈ D(Rd).

This is a linear functional on D(Rd). If x = 0, then this is the Dirac distribution
at the origin.
This functional cannot be represented by a function in L1

loc, and hence it is not
itself a function.
Proof of non-representability: Assume that δ0 can be represented by a function
f ∈ L1

loc. Then, for every ε > 0, let φε ∈ D(Rd) be such that - supp(φε) ⊂ B(0; ε),
- 0 ≤ φε ≤ 1, - φε = 1 on B[0; ε/2].
Then

δ0(φε) = φε(0) = 1,

while, by the assumption,

δ0(φε) =

∫
Rd

f(x)φε(x) dx =

∫
B(0;ε)

f(x)φε(x) dx ≤
∫
B(0;ε)

|f(x)| dx.

As ε → 0, the last integral tends to zero by local integrability of f , leading to a
contradiction. Therefore, δ0 cannot be represented by an L1

loc function.

Definition 3.51. (Weak Derivatives) A function f ∈ L1
loc(Ω) has a weak derivative

Dαf provided there exists a function g ∈ L1
loc(Ω) such that∫

Ω

g(x)φ(x) dx = (−1)|α|
∫
Ω

f(x)φ(α)(x) dx ∀ φ ∈ D(Ω).

If such a g exists, we define Dαf := g.

The notion of weak derivative may appear abstract at first, but let us see how it
naturally arises. Suppose f ∈ C1(Ω) with Ω ⊂ R. Then, by integration by parts,∫

Ω

f(x)φ′(x) dx = f(x)φ(x)
∣∣∣
∂Ω

−
∫
Ω

f ′(x)φ(x) dx.

Since φ ∈ D(Ω) vanishes on ∂Ω, the boundary term drops out:∫
Ω

f(x)φ′(x) dx = −
∫
Ω

f ′(x)φ(x) dx.

Thus f ′(x) appears in the identity above.

If f ′(x) does not exist in the classical sense, but some g ∈ L1
loc(Ω) satisfies the same

identity for all test functions φ ∈ D(Ω), then we call g the weak derivative of f .

The reason this works is that D(Ω) is dense1 in Lp(Ω) for 1 ≤ p < ∞, so such g (if it
1A subset A is dense in X if A = X.
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exists) is uniquely determined.

Example 3.52. Let d = 1, Ω = [−1, 1], and f(x) = 1− |x|.
First weak derivative. We claim the weak derivative of f is

g(x) =

{
1, x < 0,

−1, x > 0.

(its value at x = 0 is irrelevant). Indeed, for φ ∈ D(Ω),∫ 1

−1

f(x)φ′(x) dx =

∫ 0

−1

(1 + x)φ′(x) dx+

∫ 1

0

(1− x)φ′(x) dx

= (1 + x)φ(x)
∣∣∣0
−1

−
∫ 0

−1

φ(x) dx

+ (1− x)φ(x)
∣∣∣1
0
+

∫ 1

0

φ(x) dx.

Since φ(±1) = 0 and φ is continuous at 0, this becomes

−
∫ 0

−1

(1) · φ(x) dx−
∫ 1

0

(−1) · φ(x) dx = −
∫ 1

−1

g(x)φ(x) dx.

Hence g is the weak derivative of f .
Second weak derivative. Now let h be the weak derivative of g. Then for φ ∈
D([−1, 1]), ∫ 1

−1

h(x)φ(x) dx = −
∫ 1

−1

g(x)φ′(x) dx

= −
(∫ 0

−1

1 · φ′(x) dx+

∫ 1

0

(−1) · φ′(x) dx
)

= −
(
φ(0)− φ(−1)− (φ(1)− φ(0))

)
.

Since φ(±1) = 0, this reduces to

2φ(0) =

∫ 1

−1

2δ0(x)φ(x) dx.

Thus the weak derivative is h(x) = 2δ0(x). However, δ0 /∈ L1
loc(Ω), so the second weak

derivative (and higher ones) do not exist as functions in L1
loc.

But in the second differentiation example we obtained an object that is not a weak
derivative in L1

loc, but still makes sense as a distribution. This motivates a more general concept,
the distributional derivative. Before that, we recall the notion of distributions.
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Definition 3.53. (Distribution) A continuous linear functional on D(Ω) is called a
distribution on Ω. The space of all distributions is denoted by D′(Ω), i.e., the (topological)
dual of D(Ω).

Example 3.54. 1. Let f ∈ L1
loc(Ω). Define Tf : D(Ω) → R by

Tf (φ) =

∫
Ω

f(x)φ(x) dx.

Then Tf is a distribution.
2. Let x ∈ Rd. Define the Dirac distribution by

δx(φ) = φ(x), φ ∈ D(Rd).

Physicist Paul Dirac introduced the notion of the Dirac δ “function,” but it initially
lacked rigorous mathematical meaning. Laurent Schwartz later provided the correct framework
in the theory of distributions.

Figure 3.11: Paul Dirac (8 August 1902 – 20 October 1984, left) and Laurent Schwartz (5
March 1915 – 4 July 2002, right).

Definition 3.55. (Distributional Derivative) Let Ω ⊂ Rd be an open set and let
T ∈ D′(Ω). Given a multi-index α, the distributional derivative of T is defined by

DαT (φ) = (−1)|α|T
(
Dαφ

)
, ∀ φ ∈ D(Ω).
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Example 3.56. 1. The distribution 2δ0 obtained earlier is the distributional deriva-
tive of g(x) = sign(x).

2. Consider the Heaviside function on R:

H(x) =

{
1, x ≥ 0,

0, x < 0.

Clearly H ∈ L1
loc(R), hence it defines a distribution. For φ ∈ D(R),

T ′
H(φ) = (−1)TH(φ

′) = −
∫ ∞

0

φ′(x) dx = φ(0) = δ0(φ).

Thus, δ0 is the distributional derivative of H.

If a function f is sufficiently smooth, then the classical, weak, and distributional deriva-
tives all coincide. If f ∈ L1

loc but is not classically differentiable, its weak derivative may still
exist; if not, its distributional derivative always exists.

Having introduced weak derivatives, we can now generalize Lebesgue norms and spaces
to include derivatives.

Definition 3.57. (Sobolev Spaces) Let k ∈ N0 and let 1 ≤ p ≤ ∞. Suppose f ∈
L1
loc(Ω) and all weak derivatives Dαf exist for |α| ≤ k. Then we define the Sobolev norm

∥f∥Wk,p(Ω) :=


(∑

|α|≤k ∥Dαf∥pLp(Ω)

)1/p
, 1 ≤ p < ∞,

max|α|≤k ∥Dαf∥L∞(Ω), p = ∞.

The Sobolev space Wk,p(Ω) is then defined as

Wk,p(Ω) :=
{
f ∈ L1

loc(Ω) : ∥f∥Wk,p(Ω) < ∞
}
.

The name Sobolev space comes from the Russian mathematician Sergei Sobolev.

Figure 3.12: Sergei Sobolev (6 October 1908 – 3 January 1989).

It is straightforward to check that ∥ · ∥Wk,p(Ω) defines a norm, and the corresponding
Sobolev space is in fact a Banach space.

When we defined a norm in Sec. 3.1.1 we forgot to mention another important concept
called a semi-norm. A semi-norm is one which satisfies properties 1, 3, and 4 of a norm, but
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may have ∥x∥ = 0 even though x ̸= 0.

Example 3.58. Define p : R2 → R by p(x) = x1. Then this is a semi-norm since, for
x = (0, 2), we have p(x) = 0 but x ̸= 0.

Definition 3.59. For k a non-negative integer and f ∈ Wk,p(Ω) we define the Sobolev
semi-norm by

|f |Wk,p(Ω) =

∑
|α|=k

∥Dα
wf∥

p
Lp(Ω)

1/p

,

for 1 ≤ p < ∞, and in the case p = ∞

|f |Wk,∞(Ω) = max
|α|=k

∥Dα
wf∥L∞(Ω).

Now let us look at some Sobolev spaces and how these norms look in practice.

Example 3.60. 1. For p = 1, k = 1,

W1,1(Ω) =
{
f ∈ L1

loc(Ω) : ∥f∥W1,1(Ω) < ∞
}
,

where
∥f∥W1,1(Ω) =

∑
|α|≤1

∥Dα
wf∥L1(Ω).

For Ω ⊂ R2, we have α = (0, 0), (1, 0), (0, 1). Hence

∥f∥W1,1(Ω) = ∥f∥L1(Ω) +

∥∥∥∥∥∂f∂x
∥∥∥∥∥
L1(Ω)

+

∥∥∥∥∥∂f∂y
∥∥∥∥∥
L1(Ω)

.

2. For p = 2, k = 1,

W1,2(Ω) =
{
f ∈ L1

loc(Ω) : ∥f∥W1,2(Ω) < ∞
}
,

where

∥f∥2W1,2(Ω) =
∑
|α|≤1

∥Dα
wf∥2L2(Ω) = ∥f∥2L2(Ω) +

∥∥∥∥∥∂f∂x
∥∥∥∥∥
2

L2(Ω)

+

∥∥∥∥∥∂f∂y
∥∥∥∥∥
2

L2(Ω)

.

For the special case p = 2, the space L2(Ω) is a Hilbert space. Similarly, the Sobolev
space Wk,2(Ω) is a Hilbert space with the inner product

(u, v)Wk,2(Ω) :=
∑
|α|≤k

(Dα
wu,D

α
wv)L2(Ω) =

∑
|α|≤k

∫
Ω

Dα
wu(x)D

α
wv(x) dx, ∀u, v ∈ Wk,2(Ω).
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This space is so important that it has another notation:

Wk,2(Ω) = Hk(Ω).

From now on we shorten some notation. If the domain is clear we write ∥ · ∥Wk,p(Ω)

simply as ∥ · ∥k,p (and similarly for the semi-norms). For Hk(Ω) we write ∥ · ∥Hk(Ω) as ∥ · ∥k.

We also use Dα to denote Dα
w , and write ∇f for the gradient, i.e.,

∇f =

(
∂f

∂x1

, . . . ,
∂f

∂xd

)
.

Definition 3.61 (Wk,p
0 (Ω) Space). We denote by Wk,p

0 (Ω) the closure of C∞
0 (Ω) in the

norm ∥ · ∥k,p. Similarly, Hk
0(Ω) is the closure of C∞

0 (Ω) in Hk(Ω).

We now mention an important inequality that relates the Sobolev semi-norm and the
norm: the Poincaré inequality.

Lemma 3.62 (Poincaré Inequality). [10, Lemma 1.7] There exists a positive constant
CP (depending only on Ω) such that

∥v∥0,p ≤ CP|v|1,p, ∀ v ∈ W1,p
0 (Ω),

where ∥v∥0,p = ∥v∥Lp(Ω).

Proof. We split the proof into two steps.

Step 1: Reduction to smooth compactly supported functions. Assume the Poincaré
inequality holds for every v ∈ C∞

0 (Ω), i.e. there is a constant CP such that

∥w∥Lp(Ω) ≤ CP |w|1,p, ∀w ∈ C∞
0 (Ω).

Let v ∈ W1,p
0 (Ω). By definition of W1,p

0 (Ω) there exists a sequence {vn} ⊂ C∞
0 (Ω) with vn → v

in the ∥ · ∥1,p-norm. Using the triangle inequality and the assumed inequality for vn we get, for
every n,

∥v∥Lp(Ω) ≤ ∥v − vn∥Lp(Ω) + ∥vn∥Lp(Ω)

≤ ∥v − vn∥Lp(Ω) + CP |vn|1,p
≤ ∥v − vn∥Lp(Ω) + CP

(
|v − vn|1,p + |v|1,p

)
≤ (1 + CP)∥v − vn∥1,p + CP |v|1,p.

Letting n → ∞ and using vn → v in ∥ · ∥1,p gives ∥v∥Lp(Ω) ≤ CP |v|1,p. Thus it suffices to prove
the inequality for v ∈ C∞

0 (Ω).

Step 2: Proof for v ∈ C∞
0 (Ω). Extend v by zero outside Ω. Choose a > 0 such that

Ω ⊂ [−a, a]× Rd−1. For x = (x1, . . . , xd) we have

v(x) =

∫ x1

−a

∂v

∂x1

(s, x2, . . . , xd) ds,
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because v(−a, x2, . . . , xd) = 0 (extension by zero and compact support).

Let q be the conjugate exponent of p (so 1/p+ 1/q = 1). By Hölder’s inequality,

|v(x)| ≤

(∫ x1

−a

∣∣∣ ∂v
∂x1

(s, x2, . . . , xd)
∣∣∣pds)1/p(∫ x1

−a

1qds

)1/q

≤ (2a)1/q

(∫ a

−a

∣∣∣ ∂v
∂x1

(s, x2, . . . , xd)
∣∣∣pds)1/p

.

Raising to the p-th power gives

|v(x)|p ≤ (2a)p/q
∫ a

−a

∣∣∣ ∂v
∂x1

(s, x2, . . . , xd)
∣∣∣pds.

Integrate this inequality over all x ∈ Ω. For fixed x2, . . . , xd integrate in x1 ∈ [−a, a] and then
integrate over the remaining variables; by Fubini’s theorem we obtain∫

Ω

|v(x)|p dx ≤ (2a)p/q
∫
Ω

∫ a

−a

∣∣∣ ∂v
∂x1

(s, x2, . . . , xd)
∣∣∣pds dx

= (2a)p/q
∫ a

−a

∫
{ (x2,...,xd):(s,x2,...,xd)∈Ω }

∣∣∣ ∂v
∂x1

(s, x2, . . . , xd)
∣∣∣pd(x2 · · ·xd) ds

≤ (2a)p/q · (2a)
∫
Ω

∣∣∣ ∂v
∂x1

(x)
∣∣∣pdx

= (2a)1+p/q

∫
Ω

∣∣∣ ∂v
∂x1

(x)
∣∣∣pdx.

Since 1 + p/q = p (because 1/q = 1− 1/p), we get

∥v∥pLp(Ω) ≤ (2a)p
∥∥∂x1v

∥∥p
Lp(Ω)

,

hence
∥v∥Lp(Ω) ≤ 2a

∥∥∂x1v
∥∥
Lp(Ω)

.

Finally, recall the definition of the Sobolev seminorm:

|v|1,p =

(
d∑

i=1

∥∥∂xi
v
∥∥p
Lp(Ω)

)1/p

.

Since each term in the sum is nonnegative, in particular
∥∥∂x1v

∥∥
Lp(Ω)

≤ |v|1,p. Combining with
the previous inequality yields

∥v∥Lp(Ω) ≤ 2a |v|1,p.
Thus the Poincaré inequality holds for all v ∈ C∞

0 (Ω) with CP = 2a, and by Step 1 it holds for
all v ∈ W1,p

0 (Ω).

By succeessive application of the Poincare inequality shows that the semi-norm | · |k,p
is equivalent to the norm ∥ · ∥k,p on Wk,p

0 (Ω), i.e.,

|v|k,p ≤ ∥v∥k,p ≤ C|v|k,p ∀ v ∈ Wk,p
0 (Ω).
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Why are semi-norms important? Recall the Poisson equation with pure Neumann boundary
conditions: here, the choice of norm is crucial. If we take the L2-norm or the full H1-norm,
constants still remain an issue since these norms do not annihilate them, and hence the bilinear
form is not coercive. In this case, the H1 semi-norm makes sense as it vanishes on constants.
Moreover, the H1 semi-norm quantifies the gradient, which is useful for measuring the irregu-
larity of solutions.

3.2.1 Sobolev Embedding Theorem

We know that certain Lp spaces are contained within others. This also holds for Sobolev spaces.
Some inclusions are straightforward:

Wm,p(Ω) ⊂ Wk,p(Ω) for m ≥ k,

with k,m non-negative integers. Another one is

Wk,q(Ω) ⊂ Wk,p(Ω) for 1 ≤ p ≤ q ≤ ∞,

since Lq ⊂ Lp when q ≥ p.

But there are more subtle inclusions. Before stating them we define what a continuous
embedding is.

Definition 3.63. (Continuous Embedding) Let X and Y be two normed spaces with
norms ∥ · ∥X and ∥ · ∥Y respectively. We say X is continuously embedded into Y if X ⊂ Y
and there exists a constant C > 0 such that

∥x∥Y ≤ C∥x∥X ∀x ∈ X. (3.1)

We denote the embedding by X ↪→ Y .

Theorem 3.64. (Sobolev Embedding Theorem) [10, Theorem 1.5] Let Ω ⊂ Rd be
a domain with Lipschitz boundary. Then, for k ≥ 0 and 1 ≤ p ≤ ∞, the following
continuous embeddings hold:

Wk,p(Ω) ↪→ Lp∗(Ω) with
1

p∗
=

1

p
− k

d
, if k <

d

p
,

Wk,p(Ω) ↪→ Lq(Ω) ∀ q < ∞, if k =
d

p
,

Wk,p(Ω) ↪→ C0,k−d/p(Ω) if
d

p
< k <

d

p
+ 1,

Wk,p(Ω) ↪→ C0,α(Ω) ∀α ∈ (0, 1), if k =
d

p
+ 1,

Wk,p(Ω) ↪→ C0,1(Ω) if k >
d

p
+ 1.

The last three embeddings are into spaces of Hölder continuous functions (see Defini-
tion 1.4). Note that Lp is a much larger space than C(Ω), so in the last three cases one modifies
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a function v ∈ Wk,p(Ω) on a set of measure zero to obtain a continuous representative ṽ. In
practice, we do not distinguish between v and ṽ.

Why are these embeddings important? They tell us about the additional regularity
that functions in Sobolev spaces possess. For example, let d = 1, p = 2, and k = 1. Then
d/p = 1/2, so k = 1 > d/p and hence

H1(Ω) ↪→ C0,1/2(Ω).

Thus one-dimensional H1 functions are continuous. If d = 2, then d/p = 1 and k = 1 = d/p, so

H1(Ω) ↪→ Lq(Ω), ∀ q < ∞,

but not into continuous functions. This shows the critical nature of Sobolev embeddings.

Example 3.65. Consider
f(r) = log

(
− log r

)
on the domain

Ω = {(x1, x2) ∈ R2 : x2
1 + x2

2 < 1/2},

where r =
√

x2
1 + x2

2. Clearly f(r) is not continuous at r = 0 since log(− log r) → +∞
as r → 0.
However, using polar coordinates, we compute the Sobolev seminorm:

|f |21,2 =
∫
Ω

|∇f |2 dx =

∫ 2π

0

∫ 1/2

0

∣∣∣∣∂f∂r
∣∣∣∣2 r dr dφ = 2π

∫ 1/2

0

dr

r(log r)2
< ∞.

Hence f ∈ H1(Ω) despite the singularity at r = 0.

Remark 3.66. The critical nature of Sobolev embeddings in three dimensions is also reflected
in the Millennium problem for the Navier–Stokes equations. In 3D, the embedding H1(R3) ↪→
L6(R3) is just sufficient to control certain nonlinear terms, but not strong enough to guarantee
global existence and uniqueness of solutions. This borderline embedding is one of the reasons
the global regularity problem remains open.

3.2.2 Trace

The reason we are studying Sobolev spaces is to solve Poisson boundary value problems. Now
the boundary of Ω ⊂ Rd is in Rd−1 and hence its d-measure is zero (for example, the area of a
line is zero). But one still needs a way to represent the boundary values by a function defined
on Ω.

Let us take an example. Say Ω = (0, 1)2 and u(x1, x2) = x
−α/2
1 with 0 < α < 1. Now,

∥u∥22 =

∫
Ω

(x1)
−α dx

=

∫ 1

0

∫ 1

0

x−α
1 dx2dx1

=
1

1− α
< ∞.

79



MA643 - Numerical Analysis of Partial Differential Equations Summer Semester 2025

Hence u ∈ L2(Ω) but u|x1=0 = ∞. Therefore we need a way of defining the boundary values.

Theorem 3.67. (Trace Theorem)[7, Theorem B.52],[1, Theorem 5.36] Let 1 ≤ p < ∞
and Ω ⊂ Rd be a bounded domain.

• If Ω has Lipschitz boundary Γ, then the trace operator

tr : W1,p(Ω) → W1−1/p,p(Γ)

is bounded and surjective. Moreover,

W1,p
0 (Ω) = {v ∈ W1,p(Ω) : tr(v) = 0}.

• More generally, if Ω has Cm,α boundary, then for m ≥ 1,

tr : Wm,p(Ω) → Wm−1/p,p(Γ)

is bounded and surjective.

Now for p = 2 the trace operator is

tr : H1(Ω) → H1/2(Γ),

and as it is surjective every function in H1/2(Γ) is the trace of a function in H1(Ω). This is
useful in the case we seek solutions to PDEs that satisfy given values on Γ.

Corollary 3.68. [10, Corollary 1.1] Let 1 ≤ p < ∞ and Ω ⊂ Rd be a bounded domain
with Lipschitz continuous boundary Γ. Then there exists a positive constant C such that
for all g ∈ W1−1/p,p(Γ) there exists ug ∈ W1,p(Ω) satisfying

tr(ug) = g and ∥ug∥1,p,Ω ≤ C∥g∥1−1/p,p,Γ.

The function ug is called the lifting operator of g in W1,p(Ω).

Remark 3.69. The target space Wm−1/p,p(Γ) we have used is called the Sobolev–Slobodeckij
space. If we drop the smoothness condition of Cm,α boundary to just Lipschitz boundary then
the natural target becomes a larger space called a Besov space.

Now, in the last result we have introduced half spaces like H1/2(Γ). But what is half
differentiability? Fractional spaces are quite an advanced topic and are clearly out of scope of
this work. For completeness we mention them, but the only important thing to remember is
that the solution loses 1/p regularity on the boundary.

For 1 ≤ p < ∞ and 0 < σ < 1 we define

Wσ,p(Ω) =
{
u ∈ Lp(Ω) : [u]Wσ,p(Ω) < ∞

}
,

where
[u]pWσ,p(Ω) =

∫
Ω

∫
Ω

|u(x)− u(y)|p

|x− y|d+σp
dxdy,
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and we define the norm on this space by

∥u∥pWσ,p(Ω) = ∥u∥pLp(Ω) + [u]pWσ,p(Ω).

In the case of a general exponent s ∈ R+, we write s = m + σ with integer m and
0 < σ < 1, and define the space

Ws,p(Ω) = {u ∈ Wm,p(Ω) : Dαu ∈ Wσ,p(Ω) ∀ |α| = m} ,

with norm
∥u∥pWs,p(Ω) = ∥u∥pWm,p(Ω) +

∑
|α|=m

∥Dαu∥pWσ,p(Ω).

For an in-depth study we suggest the paper [6].

Remark 3.70. The last thing we want to mention about Sobolev spaces is their dual. Let
1 ≤ p < ∞ and q be the conjugate exponent of p. Let Ω ⊂ Rd. Then the dual of Wk,p

0 (Ω)
is denoted by W−k,q(Ω). In particular, if p = 2 then H−k(Ω) is the dual of Hk

0(Ω). Negative
Sobolev spaces are often defined using Fourier transforms and in practice measure how non-
smooth the functions are. We will revisit this topic later. The important thing to note is the
hierarchy of spaces

H1
0(Ω) ↪→ L2(Ω) ↪→ H−1(Ω).

3.2.3 Gauss and Green Formulas

One key aspect that we will use further is the generalization of the integration by parts formula.
Here the regularity of the domain and the solution becomes very important.

Theorem 3.71. (Gauss Theorem) Let Ω ⊂ Rd for d ≥ 2 be a bounded domain with
Lipschitz boundary Γ. Then for u ∈ W1,1(Ω),∫

Ω

∂iu(x) dx =

∫
Γ

u(s)ni(s) ds,

where n = (n1, . . . ,nd) is the unit outward normal vector to Γ.

Corollary 3.72. Let the conditions of Theorem 3.71 on Ω be satisfied. Consider u ∈
W1,p(Ω) and v ∈ W1,q(Ω) with p ∈ (1,∞) and 1/p+ 1/q = 1. Then∫

Ω

∂iu(x) v(x) dx =

∫
Γ

u(s) v(s)ni(s) ds−
∫
Ω

u(x) ∂iv(x) dx.

Proof. Since u ∈ W1,p(Ω) and v ∈ W1,q(Ω), we have uv ∈ W1,1(Ω) (by Hölder’s inequality).
Applying the product rule and Theorem 3.71 to uv yields the result.

From the above corollary we obtain Green’s formula, first given by the British mathe-
matical physicist George Green in 1828.
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Corollary 3.73. (Green’s Formula)[7, Corollary B.59] Let the conditions of Theo-
rem 3.71 on Ω be satisfied. Then∫

Ω

∇u(x) · ∇v(x) dx =

∫
Γ

∂u

∂n
(s) v(s) ds−

∫
Ω

∆u(x) v(x) dx,

for all u ∈ H2(Ω) and v ∈ H1(Ω).

Proof. The proof follows by summing over i = 1, . . . , d in the previous corollary.

Figure 3.13: Carl Friedrich Gauss (30 April 1777 – 23 February 1855, left) and George Green
(14 July 1793 – 31 May 1841, right).

3.2.4 Domains

We have seen certain types of domains that play an important role in defining results for PDEs.
Now, we want to go a little deeper and give a mathematically rigorous definition of them.

Definition 3.74. (Lipschitz Domain) Let Ω be a bounded domain in Rd. Then Ω is
called a Lipschitz domain if for every x ∈ Γ there exists a neighbourhood U of x in Rd

and new orthogonal coordinates (y1, . . . , yd) such that
1. U is a hypercube in the new coordinates, i.e.,

U = {(y1, . . . , yd) : −ai < yi < ai, i = 1, . . . , d} .

2. There exists a Lipschitz continuous function ϕ defined on

U ′ = {(y1, . . . , yd−1) : −ai < yi < ai, i = 1, . . . , d− 1} ,

such that

|ϕ(y′)| ≤ ad for every y′ = (y1, . . . , yd−1) ∈ U ′,

Ω ∩ U = {y = (y′, yd) ∈ U : yd < ϕ(y′)} ,
Γ ∩ U = {y = (y′, yd) ∈ U : yd = ϕ(y′)} .

Graphically, this means that for every x ∈ Γ there exists a local coordinate system and
an open hypercube U (an interval in 1D, an open square in 2D, an open cube in 3D, etc.) such
that the boundary can be represented as the graph of a Lipschitz continuous function ϕ over
U ′, and the domain Ω locally lies on one side of this graph. In other words, Γ ∩ U corresponds
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to the points on the graph yd = ϕ(y′), while Ω ∩ U corresponds to the points lying below it
(i.e., yd < ϕ(y′)). This is illustrated in Fig. 3.14.

Ω

x ∈ Γ

−a2 a2

a1

−a1

y2 = ϕ(y1)x

Figure 3.14: Localization of a boundary point. Left: global domain Ω and a boundary point
x ∈ Γ. Right: the zoomed neighbourhood U where the boundary is represented locally as the
graph y2 = ϕ(y1) and Ω ∩ U lies below the graph.

Example 3.75. 1. Domains such as balls and polygons in 2D are Lipschitz.
2. Consider the domain

Ω =
{
(x, y) : x2 + y2 < 1

}
\ {(x, y) : x ≥ 0, y = 0} ,

i.e., a domain with slit. Then this domain is not Lipschitz as for any hypercube
along the slit will have domain on both the sides.

3. In three dimensions, a polyhedral domain need not be Lipschitz. A simple example
is shown in Fig. 3.15, where two rectangular blocks meet at a right angle. Near a
point on the common edge, the boundary is made up of two perpendicular surface
patches. This means that for the same base point y′ ∈ R2, there are two different
possible boundary heights y3. Thus the boundary cannot be represented locally as
the graph of a single Lipschitz function y3 = φ(y′). For this reason, the Lipschitz
condition fails precisely along such non-smooth edges.

non-Lipschitz point

Figure 3.15: A polyhedral domain in 3D that is not Lipschitz: two blocks meet at a right angle,
producing a non-Lipschitz point.

If you recall from Sec. 1.3, we defined Hölder continuous functions. The hierarchy of
spaces is

C1(Ω) ⊂ C0,1(Ω) ⊂ C0,α(Ω) ⊂ C0(Ω),

where 0 < α < 1. Theorem 1.7 requires a C2,α boundary, which means the function ϕ in
Definition 3.74 must be C2,α as a function of Rd−1. This excludes many important domains —
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the square being the most obvious example. Therefore, in applications we usually restrict our
analysis to Lipschitz domains.

Remark 3.76. In the above inclusion chain, the space C0,α(Ω) may appear “larger” than C0,1(Ω),
but larger is not always better. A typical example is |x|α for 0 < α < 1. Although this function
is C0,α, it is not Lipschitz: near x = 0 its slope blows up, producing a cusp. At such points
normals and tangents are not well-defined, so many geometric results (e.g. the Gauss theorem
or trace theorems) fail.

3.3 Fixed Points

The final idea that we want to mention is the idea of fixed points, which plays a critical role in
showing the existence and uniqueness of solutions.

Let us consider the following problem in a Banach space X with an operator P : X → X:
Find x ∈ X such that

x = Px. (3.2)

The solution x ∈ X of the above problem is called a fixed point of the operator P .

Definition 3.77. (Contraction) The mapping P : X → X is called a contraction if
there exists a constant ρ < 1 such that

∥Px1 − Px2∥X ≤ ρ∥x1 − x2∥X ∀ x1, x2 ∈ X.

Now, we state one of the most important results regarding the existence and uniqueness
of fixed points.

Theorem 3.78. (Banach Fixed Point Theorem) Let X be a Banach space and P :
X → X be a contraction. Then:

1. There exists a unique fixed point x∗ ∈ X solving Eq. (3.2).
2. The sequence xn = Pxn−1, n ≥ 1, converges to the fixed point x∗ ∈ X for any initial

guess x0 ∈ X.
3. The following error estimate holds:

∥xn − x∗∥X ≤ ρn

1− ρ
∥Px0 − x0∥X ∀ n ∈ N.

Proof. We start by showing that the sequence {xn} is Cauchy. Observe that

∥xi − xi−1∥X = ∥Pxi−1 − Pxi−2∥X
≤ ρ∥xi−1 − xi−2∥X
≤ ρ2∥xi−2 − xi−3∥X
...
≤ ρi−1∥Px0 − x0∥X ∀ i ∈ N.
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Hence, for m > n ≥ 1,

∥xm − xn∥X =
∥∥∥ m∑

i=n+1

(xi − xi−1)
∥∥∥
X

≤
m∑

i=n+1

∥xi − xi−1∥X

≤
m∑

i=n+1

ρi−1∥Px0 − x0∥X

= ∥Px0 − x0∥X
m∑

i=n+1

ρi−1

≤ ρn
1− ρm−n

1− ρ
∥Px0 − x0∥X

≤ ρn

1− ρ
∥Px0 − x0∥X −→ 0,

as n → ∞. Hence {xn} is a Cauchy sequence in X, and since X is complete, it converges to
some x∗ ∈ X.

We claim that this x∗ is a fixed point of P . Indeed,

∥x∗ − Px∗∥X ≤ ∥x∗ − xn∥X + ∥xn − Px∗∥X
= ∥xn − x∗∥X + ∥Pxn−1 − Px∗∥X
≤ ∥xn − x∗∥X + ρ∥xn−1 − x∗∥X −→ 0,

as n → ∞. Hence x∗ = Px∗.

Next, we show uniqueness. Suppose x∗
1, x

∗
2 are fixed points. Then

∥x∗
1 − x∗

2∥X = ∥Px∗
1 − Px∗

2∥X ≤ ρ∥x∗
1 − x∗

2∥X .

Since ρ < 1, this implies ∥x∗
1 − x∗

2∥X = 0, i.e., x∗
1 = x∗

2.

Finally, for the error estimate, let m > n:

∥xn − x∗∥X ≤ ∥xn − xm∥X + ∥xm − x∗∥X

≤ ρn

1− ρ
∥Px0 − x0∥X + ∥xm − x∗∥X .

Letting m → ∞ gives the desired bound.

This concludes the discussion of the functional analytic concepts that are required for
the numerical analysis of PDEs. Of course, the theory of partial differential equations is a
vast subject, and this chapter by no means provides a complete coverage. For a more in-depth
treatment, we refer the reader to the books [8, 3].
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Chapter 4

Weak Solution Theory

In the last chapter, we introduced the notion of weak derivatives and Sobolev spaces. The
reason for this is to generalize the notion of a solution of a differential equation to that of a weak
solution. Classical solutions also suffer from strong regularity assumptions. Moreover, there are
PDEs which do not admit a classical solution and only possess a weak solution, for example,
Tsirelson’s stochastic differential equation, named after the Russian-Israeli mathematician Boris
Semyonovich Tsirelson.

Figure 4.1: Boris Semyonovich Tsirelson: 4 May 1950 – 21 January 2020.

Hence, there is a need to study weak solutions. This also motivates the development of
numerical methods for weak solutions. In this chapter, we will introduce the setting for comput-
ing weak solutions, establish their existence and uniqueness, and finally provide a theoretical
framework for the finite element method.

4.1 Variational Formulation

We revisit the Poisson equation in one dimension defined over [0, 1]. Let us consider the two-
point boundary value problem

−u′′(x) = f(x), 0 < x < 1, (D)
u(0) = u(1) = 0.

where f(x) is a given continuous function. We call this a boundary value problem and denote
it by (D). Since f(x) is continuous, we can compute the solution easily by integrating the
equation twice.
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Let us now consider another problem, which is a minimization problem: find u ∈ V
such that F (u) ≤ F (v) for all v ∈ V , where

F (u) =
1

2
(u′, u′)− (f, u),

is an energy functional from V to R, and V is a vector space defined by

V = {v : v ∈ C[0, 1], v′(x) is piecewise continuous and bounded on [0, 1], and v(0) = v(1) = 0} .

We denote this problem by (M).

Now, let us look at a third problem. Find u ∈ V such that

(u′, v′) = (f, v) ∀ v ∈ V,

where (·, ·) is the L2 inner product. We denote this problem by (V ), and the reason for choosing
this formulation will be made clear later.

In physics, F (v) represents the total potential energy associated with the displacement
v ∈ V . The minimization problem (M) corresponds to the fundamental principle of minimum
potential energy in mechanics, and the problem (V ) corresponds to the principle of virtual
work.

We claim that the solution u of (D) is also a solution to all three problems. We first
start by showing that if u solves (D), then u solves (V ), which we denote by (D) ⇒ (V ).
Suppose u solves (D). To show that u solves (V ), we multiply Eq. (D) by a function v ∈ V
(called a test function) and integrate over (0, 1). Then,

−
∫ 1

0

u′′(x)v(x) dx =

∫ 1

0

f(x)v(x) dx.

Using integration by parts and the fact that v(0) = v(1) = 0, we obtain

−
∫ 1

0

u′′(x)v(x) dx = −u(x)v(x)
∣∣1
0
+

∫ 1

0

u′(x)v′(x) dx = (u′, v′) .

Hence u solves the problem (V ).

Next, we show (V ) ⇔ (M). Let u ∈ V be a solution of (V ) and let v ∈ V . Set
w = v − u, so that v = u+ w. Now,

F (v) = F (u+ w)

=
1

2
(u′ + w′, u′ + w′)− (f, u+ w)

=
1

2
(u′, u′) + (u′, w′) +

1

2
(w′, w′)− (f, u)− (f, w).

Since (u′, w′) = (f, w), we get

F (v) =
1

2
(u′, u′) +

1

2
(w′, w′)− (f, u)

= F (u) +
1

2
∥w′∥2L2 ≥ F (u).
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As v ∈ V was arbitrary, we conclude that u ∈ V is the solution of (M).

Conversely, let u ∈ V be the solution of (M). Then for any v ∈ V and ε ∈ R,

F (u) ≤ F (u+ εv),

since u+ εv ∈ V . Thus the function

g(ε) = F (u+ εv) =
1

2
(u′ + εv′, u′ + εv′)− (f, u+ εv)

has a minimum at ε = 0 and hence g′(0) = 0. Now

g′(ε) = (u′, v′) + ε (v′, v′)− (f, v),

and g′(0) = 0 implies
(u′, v′) = (f, v).

Hence, u is a solution of (V ). In fact, u is the unique solution, which can be verified as an
exercise.

So far, we have shown the relation (D) ⇒ (V ) ⇔ (M). Finally, we must show that if
u is the solution of (V ), then u is also the solution of (D). Let u ∈ V satisfy∫ 1

0

u′(x)v′(x) dx =

∫ 1

0

f(x)v(x) dx ∀ v ∈ V.

Assume u′′(x) exists and is continuous. Then, using integration by parts on the first term and
the fact that v(0) = v(1) = 0, we obtain∫ 1

0

u′(x)v′(x) dx = u′(x)v(x)
∣∣1
0
−
∫ 1

0

u′′(x)v(x) dx = −
∫ 1

0

u′′(x)v(x) dx.

As u′′(x) is continuous, we get

−
∫ 1

0

(u′′ + f)(x)v(x) dx = 0, ∀ v ∈ V.

Therefore, (u′′ + f) (x) = 0, and hence u(x) is the solution.

Thus, we have three equivalent formulations of the same problem, but the problems
(V ) and (M) have some nice properties: they only depend on u′(x), and therefore we can work
with less regular spaces. The problem (V ) is referred to as the variational problem, as we are
varying over the space V . This gives the motivation to study problem (V ) or (M) instead of
(D), and forms the starting point of the theory of weak solutions.

4.1.1 Symmetric Problems

Before moving forward, let us introduce certain definitions and notations.

Definition 4.1. Bilinear Form A bilinear form a(·, ·) on a vector space V is a mapping
V × V → R such that each of the maps v 7→ a(v, w) and w 7→ a(v, w) is linear on V . We
say it is symmetric if

a(v, w) = a(w, v) ∀ v, w ∈ V.
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Example 4.2. 1. Let V = R2. Then a(x,y) = x · y is a symmetric bilinear form on
R2.

2. Let V = R2. Then a(x,y) = x1y2 is a non-symmetric bilinear form. For example,

with x =

[
1
0

]
and y =

[
0
1

]
, we have a(x,y) = 1 while a(y,x) = 0.

It is easy to see that an inner product is a symmetric bilinear form. As we know that
an inner product defines a norm on the space, a symmetric bilinear form also induces a norm
on the space, denoted by ∥ · ∥a, i.e.,

∥v∥a =
√

a(v, v).

Let V be a Hilbert space and a(·, ·) : V × V → R be a symmetric bilinear form which
is an inner product on V . Let f ∈ V ∗, i.e., the dual space of V . Then we seek u ∈ V such that

a(u, v) = ⟨f, v⟩ ∀ v ∈ V.

Theorem 4.3. (Existence and Uniqueness of Solution) Let f ∈ V ∗. Then there
exists a uniquely determined u ∈ V with

a(u, v) = ⟨f, v⟩ ∀ v ∈ V,

where ⟨·, ·⟩ denotes the duality pairing.

Proof. The proof follows directly from the Riesz Representation Theorem 3.44.

4.1.2 Non-Symmetric Problems

Now, in the case a(·, ·) is not symmetric, we still have existence and uniqueness of the solution,
provided the bilinear form satisfies certain properties.

Definition 4.4. (Bounded and Coercive) A bilinear form a(·, ·) on a normed space
V is said to be bounded (or continuous) if there exists M < ∞ such that

|a(u, v)| ≤ M∥u∥V ∥v∥V ∀ u, v ∈ V.

The bilinear form is said to be V -elliptic (or coercive) on V if there exists m > 0 such
that

a(u, u) ≥ m∥u∥2V ∀ u ∈ V,

where M is independent of u, v and m is independent of u.
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Theorem 4.5. (Lax–Milgram Theorem) Given a Hilbert space (V, (·, ·)), a continuous
coercive bilinear form a(·, ·), and a continuous linear functional f ∈ V ∗, there exists a
unique u ∈ V such that

a(u, v) = ⟨f, v⟩ ∀ v ∈ V. (4.1)

Proof. The proof uses the Banach fixed point theorem 3.78. For any u ∈ V , define a functional
Au by

⟨Au, v⟩ = a(u, v) ∀ v ∈ V.

Then Au is linear, since a(·, ·) is bilinear. Moreover, Au is continuous, since

|⟨Au, v⟩| = |a(u, v)| ≤ M∥u∥V ∥v∥V .

Therefore,

∥Au∥V ∗ = sup
v ̸=0

|⟨Au, v⟩|
∥v∥V

≤ M∥u∥V < ∞,

hence Au ∈ V ∗.

Equation (4.1) can then be written as: find u ∈ V such that

⟨Au, v⟩ = ⟨f, v⟩ ∀ v ∈ V,

⟨Au − f, v⟩ = 0 ∀ v ∈ V.

Hence,
Au = f. (4.2)

By the Riesz Representation Theorem, for all φ ∈ V ∗ there exists a unique τφ ∈ V such
that

⟨φ, v⟩ = (τφ, v) ∀ v ∈ V. (4.3)

Thus instead of finding the functional Au in Eq. (4.2), we compute its Riesz representer, i.e.,

τAu = τf ,

since τ : V ∗ → V is one-to-one. Hence the problem reduces to: find u ∈ V such that τAu = τf .

Define a mapping T : V → V by

T (v) = v − ρ (τAv − τf ) ,

where ρ ̸= 0 is a constant. If T is a contraction, then by the Banach fixed point theorem there
exists a unique u ∈ V such that

Tu = u,

u− ρ (τAu − τf ) = u,

τAu = τf .
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It remains to show that T is a contraction. Let v1, v2 ∈ V and set v = v1 − v2. Then,
using linearity of τ and A, Eq. (4.3), and the boundedness and coercivity of a(·, ·), we obtain

∥Tv1 − Tv2∥2V = ∥v − ρ (τAv) ∥2V
= ∥v∥2V + ρ2∥τAv∥2V − 2ρ(τAv , v)

= ∥v∥2V − 2ρ a(v, v) + ρ2 a(v, τAv)

≤ ∥v∥2V − 2ρm∥v∥2V + ρ2M∥v∥V ∥τAv∥V
≤

(
1− 2ρm+ ρ2M2

)
∥v∥2V .

Thus, if 1 − 2ρm + ρ2M2 < 1, i.e., if there exists ρ such that ρM2 − 2m < 0, then T is a
contraction. Such a ρ always exists, and hence the proof is complete.

Hence we have existence and uniqueness of the solution for both symmetric and non-
symmetric problems.

Remark 4.6. It follows from the coercivity of the bilinear form that

∥u∥V ≤ 1

m
∥f∥V ∗ ,

which shows that the weak form is well-posed in the sense that it has a unique solution, which
depends continuously on the data f .

4.2 Weak Solution
We move back to the original problem we stated in Chapter 1, i.e., the Poisson equation. Let
us recall it. We try to solve

−∆u = f in Ω,

u = 0 on Γ, (4.4)

where Ω ⊂ Rd is a Lipschitz domain and f ∈ L2(Ω). Here we are assuming homogeneous
Dirichlet boundary conditions, but we will also tackle the general problem. The existence and
uniqueness of a classical solution depend on Ω and f (see Theorem 1.7). In reality, f may not
be differentiable or continuous. For example,

f(x) = 1 + sgn(1− |x|),

which is a piecewise continuous function (see Fig. 4.2).

Let u ∈ C2(Ω) ∩ C(Ω) be a classical solution of Eq. (4.4) and assume f ∈ C(Ω). Multi-
plying Eq. (4.4) with v ∈ C∞

0 (Ω) and integrating over Ω we get

−
∫
Ω

∆u v dx =

∫
Ω

fv dx.

Using Corollary 3.73 and the fact that v = 0 on Γ, we obtain∫
Ω

∇u · ∇v dx =

∫
Ω

fv dx ∀ v ∈ C∞
0 (Ω). (4.5)
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x

1 + sgn(1− |x|)

Figure 4.2: Piecewise continuous function /∈ L2(Ω).

Since C∞
0 (Ω) is dense in H1

0(Ω), the solution u also satisfies Eq. (4.5) for all v ∈ H1
0(Ω). Hence

the classical solution u need not be in C2(Ω)∩ C(Ω) to make sense of the integrals in Eq. (4.5);
everything works for u ∈ H1

0(Ω) as well.

Definition 4.7. (Weak Solution) A function u ∈ H1
0(Ω) satisfying Eq. (4.5) is called

a weak solution or a generalized solution of Eq. (4.4), where the partial derivatives are
to be understood as weak derivatives. Eq. 4.5 is referred to as the weak formulation or
variational formulation.

Hence the weak formulation of Eq. (4.4) reads as: Find u ∈ V = H1
0(Ω) such that

a(u, v) =

∫
Ω

∇u · ∇v dx =

∫
Ω

fv dx := F (v) ∀ v ∈ V. (4.6)

Now it is easy to see that a(·, ·) is a bilinear form from V × V → R and F (·) is a linear form
from V → R. Hence, for the existence and uniqueness of the solution we use the Lax-Milgram
theorem.

Theorem 4.8. (Existence and Uniqueness Theorem) There exists a unique weak
solution u ∈ V for Eq. (4.4).

Proof. We need to show that the bilinear form a(·, ·) and F (·) satisfy the conditions of the
Lax-Milgram theorem, i.e., a(·, ·) needs to be continuous and coercive, and F (·) needs to be
continuous on V = H1

0(Ω). We recall that the norm on V is ∥ · ∥1 = ∥ · ∥H1
0(Ω), which we denote

by ∥ · ∥V , and is given by

∥u∥2V = ∥u∥20 + ∥∇u∥20 = ∥u∥2L2(Ω) + ∥∇u∥2L2(Ω).
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Now, using the Cauchy–Schwarz inequality for integrals and sums we get

|a(u, v)| =

∣∣∣∣∣
∫
Ω

∇u · ∇v dx

∣∣∣∣∣ =

∣∣∣∣∣
∫
Ω

d∑
i=1

∂u

∂xi

∂v

∂xi

dx

∣∣∣∣∣
≤

d∑
i=1

∫
Ω

∣∣∣∣∣ ∂u∂xi

∣∣∣∣∣
∣∣∣∣∣ ∂v∂xi

∣∣∣∣∣ dx
≤

d∑
i=1

∫
Ω

∣∣∣∣∣ ∂u∂xi

∣∣∣∣∣
2

dx

1/2∫
Ω

∣∣∣∣∣ ∂v∂xi

∣∣∣∣∣
2

dx

1/2

≤

 d∑
i=1

∫
Ω

∣∣∣∣∣ ∂u∂xi

∣∣∣∣∣
2

dx

1/2 d∑
i=1

∫
Ω

∣∣∣∣∣ ∂v∂xi

∣∣∣∣∣
2

dx

1/2

= ∥∇u∥0 ∥∇v∥0 ≤ ∥u∥V ∥v∥V .

Hence a(·, ·) is continuous with M = 1. For coercivity we notice that

a(u, u) = ∥∇u∥20 =
∫
Ω

d∑
i=1

∣∣∣∣∣ ∂u∂xi

∣∣∣∣∣
2

dx.

Now from the Poincaré inequality 3.62 we have

∥u∥20 ≤ C2
P∥∇u∥20,

∥u∥20 + ∥∇u∥20 ≤
(
C2

P + 1
)
∥∇u∥20,

∥∇u∥20 ≥ 1

1 + C2
P

∥u∥2V . (4.7)

Hence

a(u, u) ≥ ∥u∥2V
1 + C2

P

.

Thus a(·, ·) is coercive. Finally, we show that F (·) is bounded, which follows from the Cauchy–
Schwarz inequality and the fact that f ∈ L2(Ω). Indeed,

|F (v)| =

∣∣∣∣∣
∫
Ω

f(x)v(x) dx

∣∣∣∣∣ ≤ ∥f∥0∥v∥0 ≤ ∥f∥0∥v∥V .

Hence, the existence and uniqueness of the solution follow from the Lax-Milgram theorem.

Remark 4.9. We assumed f ∈ L2(Ω) in the previous theorem. In reality, we can reduce this
assumption to f ∈ H−1(Ω), where H−1(Ω) is the dual of H1

0(Ω). In this case we write F (v) =
⟨f, v⟩, and

⟨f, v⟩ ≤ ∥f∥V ∗∥v∥V ,

by Lemma 3.37, and the boundedness of F (·) follows.
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4.2.1 General Elliptic Operator

Let us consider a more general elliptic operator and see how the continuity and coercivity
of a(·, ·) is computed. Consider the generalized elliptic equation of second order with mixed
boundary conditions defined on the Lipschitz domain Ω

−∆u+ b · ∇u+ cu = f in Ω,

u = 0 on ΓD,

∂u

∂n
= g on ΓN, (4.8)

where Ω ⊂ Rd is a Lipschitz domain, Γ = ΓD ∪ ΓN, and ΓD ∩ ΓN = ∅. The coefficients b and c
are assumed to be sufficiently smooth, f ∈ L2(Ω) and g ∈ L2(ΓN).

Now, we define a new space

V = H1
D(Ω) =

{
v ∈ H1(Ω) : v|ΓD

= 0
}
.

Obviously, V ⊂ H1(Ω) and the seminorm | · |1 is equivalent to ∥ · ∥1 (a consequence of the
Poincaré inequality). We take the norm on V as ∥ · ∥1, i.e., the H1 norm.

First, we need to compute the variational formulation. Similar to the Poisson equation,
we multiply Eq. (4.8) with a v ∈ V and integrate over Ω. By integration by parts,

−
∫
Ω

∆u v dx+

∫
Ω

b · ∇u v dx+

∫
Ω

c(x)uv dx =

∫
Ω

fv dx,∫
Ω

∇u · ∇v dx−
∫
Γ

∂u

∂n
v ds+

∫
Ω

b · ∇u v dx+

∫
Ω

c(x)uv dx =

∫
Ω

fv dx,∫
Ω

(∇u · ∇v + b · ∇u v + cuv) dx =

∫
Ω

fv dx+

∫
ΓN

∂u

∂n
v ds.

Keeping the unknown function u on the left, we get the weak formulation: Find u ∈ V
such that

a(u, v) = F (v) ∀ v ∈ V,

where

a(u, v) =

∫
Ω

(∇u · ∇v + b · ∇u v + cuv) dx,

F (v) =

∫
Ω

fv dx+

∫
ΓN

gv ds.

Remark 4.10. Similar to Remark 4.9, g can be in H−1(Ω) instead of L2(Ω), in which case the
boundary integral is replaced by a duality pairing ⟨·, ·⟩.

After the weak formulation, for existence and uniqueness of the solution, we need to
show that a(·, ·) is continuous and coercive. The verification of bilinearity and linearity is
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straightforward. Now,

|a(u, v)| ≤
∫
Ω

(
|∇u · ∇v|+ |b · ∇u v|+ |cuv|

)
dx

≤
d∑

i=1

∫
Ω

∣∣∣∣∣ ∂u∂xi

∣∣∣∣∣
∣∣∣∣∣ ∂v∂xi

∣∣∣∣∣dx+
d∑

i=1

sup
x∈Ω

|bi(x)|
∫
Ω

∣∣∣∣∣ ∂u∂xi

∣∣∣∣∣ |v| dx+ sup
x∈Ω

|c(x)|
∫
Ω

|uv| dx.

Applying the Cauchy–Schwarz inequality as in the Poisson problem, we get

|a(u, v)| ≤ |u|1|v|1 +
d∑

i=1

sup
x∈Ω

|bi(x)|

∫
Ω

∣∣∣∣∣ ∂u∂xi

∣∣∣∣∣
2

dx

1/2

∥v∥0 + ∥c∥∞∥u∥0∥v∥0

≤ ∥u∥1∥v∥1 +

(
d∑

i=1

∥bi∥2∞

)1/2

∥u∥1∥v∥0 + ∥c∥∞∥u∥1∥v∥1

≤ M∥u∥V ∥v∥V ,

where M = 1 +
(∑d

i=1 ∥bi∥2∞
)1/2

+ ∥c∥∞. Hence a(·, ·) is a continuous bilinear form.

Now for coercivity, let us look at

a(u, u) =

∫
Ω

|∇u|2dx+

∫
Ω

(b · ∇u+ cu)u dx

=
d∑

i=1

∫
Ω

∣∣∣∣∣ ∂u∂xi

∣∣∣∣∣
2

dx+
d∑

i=1

∫
Ω

bi(x)
∂u

∂xi

u dx+

∫
Ω

cu2 dx.

The first and third terms are easy to bound, so let us focus on the second term. Using ∂i(u
2) =

2u∂iu and integration by parts, we get

d∑
i=1

∫
Ω

bi(x)
∂u

∂xi

u dx =
1

2

d∑
i=1

∫
Ω

bi(x)
∂(u2)

∂xi

dx

=
1

2

d∑
i=1

(∫
Γ

bi(x)ni(x)u
2 ds−

∫
Ω

∂xi
bi(x)u

2 dx

)
=

1

2

∫
ΓN

b · nu2 ds− 1

2

∫
Ω

∇ · bu2 dx,

which leads to

a(u, u) = |u|21 +
∫
Ω

(
c(x)− 1

2
∇ · b

)
u2dx+ 1

2

∫
ΓN

(b · n)u2ds.

Now if c(x)− 1

2
∇ · b ≥ 0 for all x ∈ Ω and b · n ≥ 0 for all x ∈ ΓN, then a(u, u) ≥ |u|21.

Using the Poincaré inequality as in Eq. (4.7), we get

a(u, u) ≥ 1

1 + C2
P

∥u∥2V ∀ u ∈ V.
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Hence a(·, ·) is a continuous and coercive bilinear form.

Now, for proving the continuity of F (·) we use the Cauchy–Schwarz inequality and the
continuity of the trace operator, i.e.,

∥u∥L2(ΓN) ≤ CT∥u∥H1(Ω),

where CT is a constant, to get

|F (v)| =

∣∣∣∣∣
∫
Ω

fv dx+

∫
ΓN

gv ds

∣∣∣∣∣
≤ ∥f∥0∥v∥0 + ∥g∥0,ΓN

∥v∥0,ΓN

≤ (∥f∥0 + CT∥g∥0,ΓN
) ∥v∥V

≤ C∥v∥V .

Hence F (·) is continuous and therefore we get existence and uniqueness of the solution using
the Lax–Milgram theorem.

Remark 4.11. We notice that the Dirichlet boundary condition needs to be imposed on the
function spaces, whereas the Neumann boundary condition appears naturally in the weak for-
mulation. This is the reason Dirichlet boundary conditions are referred to as essential boundary
conditions whereas Neumann boundary conditions are called natural boundary conditions in
Sec. 1.1.1.

Remark 4.12. Until now we restricted to the case u = 0 on ΓD, but if u = g on ΓD, then what
happens? Using Corollary 3.68 we know that there exists a lifting operator ug ∈ H1(Ω) such
that

tr(ug) = g.

Now, consider w = u − ug. This is zero on ΓD and hence the weak formulation for Eq. (4.4)
reads: Find w ∈ H1

0(Ω) such that∫
Ω

∇w · ∇v dx =

∫
Ω

fv dx−
∫
Ω

∇ug · ∇v dx.

Hence we have a different linear functional F (·) given by

F (v) =

∫
Ω

fv dx−
∫
Ω

∇ug · ∇v dx,

while the bilinear form remains the same. Therefore, we need to check the continuity of F (·),
and we notice that

|F (v)| ≤
∫
Ω

|fv|dx+

∫
Ω

|∇ug · ∇v|dx

≤ ∥f∥0∥v∥0 + ∥∇ug∥0∥∇v∥0
≤ (∥f∥0 + ∥∇ug∥0) ∥v∥V .

Hence we still have the existence and uniqueness of the solution. This same idea extends to a
general elliptic operator as well.
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4.3 Galerkin Methods
Until now we have looked at the existence and uniqueness of the solution for the variational
problem: Find u ∈ V such that

a(u, v) = ⟨f, v⟩ ∀ v ∈ V, (4.9)

where V is a Hilbert space and a(·, ·) is either a non-symmetric bilinear form (provided it is
continuous and coercive) or a symmetric bilinear form. But in the quest for existence and
uniqueness we often forget about the solution itself, and hence in numerics we care about
computing it. We cannot compute a solution in an infinite space (there is no concept of infinite
memory), so we need to approximate it in a finite-dimensional subspace of V .

Let Vh be a finite-dimensional subspace of V , with the discretisation parameter h used
to indicate that the discrete solution obtained in Vh converges to the continuous solution as
h → 0. The standard Galerkin method for computing the solution consists of restricting the
variational problem to Vh, i.e., we solve: Find uh ∈ Vh such that

a(uh, vh) = ⟨f, vh⟩ ∀ vh ∈ Vh. (4.10)

We call Vh the ansatz space (trial space) and also the test space in this standard Galerkin for-
mulation, since the trial and test spaces coincide. The existence and uniqueness of the solution
for the discrete problem follows from the fact that Vh ⊂ V and the inner product and norm
are inherited: the bilinear form a(·, ·) and the linear functional F (·) = ⟨f, ·⟩ remain continuous
on Vh. Likewise coercivity on V implies coercivity on Vh. Hence, by the Lax–Milgram theorem
there exists a unique uh ∈ Vh solving the discrete problem.

The Galerkin method is named after the Soviet engineer Boris Galerkin who developed
this method in 1915. I.G. Bubnov also developed a similar approach for variational problems,
while Galerkin independently proposed the method in the context of structural mechanics.

Figure 4.3: Boris Galerkin (4 March 1871 – 12 July 1945, left) and Walther Ritz (22 February
1878 – 7 July 1909, right).

We now show that the discrete variational problem is equivalent to solving a linear
algebraic system. As Vh is finite-dimensional, let dim(Vh) = N , i.e., there exist basis functions
{φi}Ni=1 that span Vh. Choosing the test functions vh = φi in the discrete variational equation
yields

a(uh, φi) = ⟨f, φi⟩ for i = 1, . . . , N.

Since uh ∈ Vh, it can be written as a linear combination of the basis:

uh(x) =
N∑
j=1

ujφj(x),
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where the coefficients {uj}Nj=1 are unknown. Substituting this expansion and using linearity of
a(·, ·) gives

N∑
j=1

a(φj, φi)uj = ⟨f, φi⟩ for i = 1, . . . , N.

Setting
aij = a(φj, φi) and fi = ⟨f, φi⟩

we obtain the linear system
Au = b,

where A = (aij) ∈ RN×N is the stiffness matrix and b = (fi) ∈ RN is the load vector. Once
the vector u = (uj)

N
j=1 is computed we recover the discrete solution uh.

Next we show that the algebraic system is equivalent to the discrete variational state-
ment in the sense that solving one solves the other. Let vh ∈ Vh be arbitrary; then

vh(x) =
N∑
i=1

viφi(x).

By linearity of a(·, ·) and of the duality pairing,

a(uh, vh) = a
(
uh,

N∑
i=1

viφi

)
=

N∑
i=1

vi a(uh, φi) =
N∑
i=1

vi ⟨f, φi⟩ = ⟨f, vh⟩,

so the two formulations are equivalent.

This approximation method is referred to as the Galerkin method.

Remark 4.13. 1. In the case a(·, ·) is symmetric, one may equivalently obtain the discrete
solution by solving the finite-dimensional minimization problem: find uh ∈ Vh that mini-
mizes the energy functional

F (u) =
1

2
a(u, u)− ⟨f, u⟩.

Numerically solving this minimization problem is referred to as the Ritz method (see [2,
§2.5.1]). It is also easy to observe that the stiffness matrix A is symmetric when the
bilinear form is symmetric.

2. If a(·, ·) is coercive with coercivity constant m > 0, then the matrix A is positive definite.
Indeed, for any vector ξ ∈ RN define v =

∑N
j=1 ξjφj ∈ Vh. Then

ξ⊤A ξ =
N∑
i=1

N∑
j=1

ξjaijξi = a
( N∑

j=1

ξjφj,

N∑
i=1

ξiφi

)
= a(v, v) ≥ m∥v∥2V .

In particular, if v ̸= 0 then ξ⊤A ξ > 0.

Remark 4.14. (Petrov–Galerkin Method) In the standard Galerkin method the trial (ansatz)
and test spaces coincide. In the Petrov–Galerkin method they may be different: find uh ∈ Wh

such that
a(uh, wh) = ⟨f, wh⟩ ∀ wh ∈ Vh,
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where Wh and Vh are finite-dimensional subspaces of possibly different Hilbert spaces W and V .
The conditions on a(·, ·) and F (·) must be adapted accordingly (continuity, inf–sup conditions,
or appropriate stability assumptions). Petrov–Galerkin methods (introduced by Georgy Petrov)
are important in applications such as stabilized methods for advection-dominated problems (e.g.
SUPG) [4].

4.3.1 Abstract Error Estimates

Now the next thing we want to do is estimate the error that arises when approximating Eq. 4.9
with Eq. (4.10).

Lemma 4.15. (Céa’s Lemma[BS07]) Let V be a Hilbert space. Suppose that the bilin-
ear form a(·, ·) is continuous and coercive, and the linear form F (·) is continuous. Then,
for the unique solutions u and uh of Eq. (4.9) and Eq. (4.10), respectively, we have

∥u− uh∥V ≤ M

m
inf

vh∈Vh

∥u− vh∥V ,

where M and m are the continuity and coercivity constants, respectively.

Proof. Since a(u, v) = ⟨f, v⟩ for all v ∈ V and a(uh, vh) = ⟨f, vh⟩ for all vh ∈ Vh, and as Vh ⊂ V ,
we get

a(u− uh, vh) = 0 ∀vh ∈ Vh. (4.11)

Due to coercivity, we have

m∥u− uh∥2V ≤ a(u− uh, u− uh)

= a(u− uh, u− vh) + a(u− uh, vh − uh) ∀vh ∈ Vh.

Since uh, vh ∈ Vh, we have uh − vh ∈ Vh, and hence the second term vanishes due to Eq. (4.11).
Using the continuity of a(·, ·), we get

m∥u− uh∥2V ≤ a(u− uh, u− uh)

≤ M∥u− uh∥V ∥u− vh∥V ,

⇒ ∥u− uh∥V ≤ M

m
∥u− vh∥V ∀vh ∈ Vh.

Therefore,

∥u− uh∥V ≤ M

m
inf

vh∈Vh

∥u− vh∥V .

Céa’s lemma was proved by Jean Céa a French mathematician in his PhD thesis.

Remark 4.16. In the case where a(·, ·) is a symmetric bilinear form, the norm on V is induced
by
√

a(·, ·), i.e.,
∥v∥2V = a(v, v),

100



MA643 - Numerical Analysis of Partial Differential Equations Summer Semester 2025

Figure 4.4: Jean Céa: 8 February 1932 - 9 January 2024.

then in the proof of Lemma 4.15 we obtain

∥u− uh∥V ≤ inf
vh∈Vh

∥u− vh∥V ,

since continuity of a(·, ·) is replaced by the Cauchy–Schwarz inequality, and coercivity follows
from the definition of the norm. Hence, the solution is the best approximation.

For a non-symmetric bilinear form, we get that the error is bounded by the best ap-
proximation error, i.e., it is quasi-optimal.

Lemma 4.17. (Galerkin Orthogonality) Let u and uh be the solutions of Eq. (4.9)
and Eq. (4.10), respectively. Then

a(u− uh, vh) = 0 ∀vh ∈ Vh.

Proof. As shown in the proof of Lemma 4.15.

For a symmetric bilinear form, the Galerkin orthogonality states that u − uh ⊥ vh for
all vh ∈ Vh, and hence uh is the best approximation (see Fig. 4.5).

Vh
u

uh

u− uh

Figure 4.5: Galerkin orthogonality: the error u− uh is orthogonal to the subspace Vh.

Now, the idea in the development of numerical methods is to find a finite-dimensional
subspace Vh such that the matrix A is easy to solve. What we want is that the entries can
be computed efficiently and that the matrix is sparse. This is the origin of the finite element
method.

101



MA643 - Numerical Analysis of Partial Differential Equations Summer Semester 2025

102



Chapter 5

Finite Element Method

In the previous chapter, we introduced the idea of Galerkin methods, where the goal is to find
an approximate solution in a finite-dimensional subspace Vh ⊂ V . In this chapter, we explore
this concept in detail.

The finite element method (FEM) was originally developed by civil engineers to analyze
the stress and strain in structures such as buildings and bridges. However, the lack of mathe-
matical rigor in early implementations sometimes led to catastrophic failures. One well-known
example is the Tacoma Narrows Bridge, built in the 1940s, which collapsed just four months
after its inauguration. This incident highlights the importance of studying the mathematical
foundations of the finite element method.

Figure 5.1: Collapse of the Tacoma Narrows Bridge.

In its simplest form, the finite element method provides a systematic way to construct
finite-dimensional subspaces Vh, called finite element spaces. The construction of such spaces
is characterized by three basic concepts:

FEM 1 Triangulation of Ω: The domain Ω is divided into a finite number of subsets K, called
finite elements, that together cover Ω:

Ω =
⋃
K

K.

FEM 2 Finite Element Space: Once a triangulation is defined, we construct a finite element
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space Vh consisting of functions that are either polynomial or “close” to polynomial on
each element.

FEM 3 Basis Functions: The third fundamental concept is the existence of at least one canon-
ical basis of Vh, whose elements have small (ideally local) supports.

With these foundational ideas in mind, we now examine each in detail, beginning with
the notion of triangulation.

5.1 Triangulation

The first step in the finite element method is the decomposition of Ω into geometrical shapes
such as triangles or quadrilaterals. This decomposition is called a triangulation, denoted by
Th. In general, one can also use other polygonal or polyhedral elements such as pentagons
or hexagons; however, the most commonly used shapes are triangles (or tetrahedra in three
dimensions) and quadrilaterals (or hexahedra).

Each polyhedron (or cell) in Th is called a mesh cell and is denoted by K.

Definition 5.1 (Admissible Triangulation). A triangulation Th is called admissible
if the following conditions hold:

1. Ω =
⋃

K∈Th

K.

2. Each element K is closed, and its interior K̊ is non-empty.
3. For each K ∈ Th, the boundary ∂K is Lipschitz-continuous.
4. The intersection of any two mesh cells is either empty or a common m-face, where

m ∈ {0, 1, . . . , d− 1}.

In some references, the elements K are taken to be open sets. In that case,

Ω =
⋃

K∈Th

K.

Figure 5.2 shows examples of admissible (right) and non-admissible (left) triangulations.
The left mesh is non-admissible because K1 ∩ K2 is an incomplete face. In some literature,
admissible triangulations are also referred to as conforming triangulations.

K1

K2

Figure 5.2: Non-admissible triangulation (left) and admissible triangulation (right).
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5.1.1 Simplex

The three-dimensional counterpart of a triangle is a tetrahedron. More generally, both triangles
and tetrahedra can be viewed as specific cases of a higher-dimensional object called a simplex.
Before defining a simplex, let us first recall the notion of a convex hull.

Definition 5.2 (Convex Hull). The convex hull of a set of points is the smallest convex
set that contains those points.

Definition 5.3 (Simplex). A d-simplex in Rd is the convex hull of d+1 points {aj}dj=0 ⊂
Rd such that the matrix

A =

[
a0 a1 · · · ad

1 1 · · · 1

]
∈ R(d+1)×(d+1)

is non-singular; that is, det(A) ̸= 0.

At first glance, this definition might appear abstract. To gain intuition, consider the
case d = 2. Then, the simplex is a triangle determined by three non-collinear points, each
having two coordinates. In this case, the determinant in the above definition is twice the area
of the triangle—equivalently, twice the result obtained using the shoelace formula for polygonal
areas.

Now, we can write A as

A =

[
a0 a1 − a0 · · · ad − a0

1 0 · · · 0

]
∈ R(d+1)×(d+1).

Therefore

det(A) = det [(a1 − a0) · · · (ad − a0)] ,

which is the area of the parallelopiped spanned by the vectors (a1−a0), (a2−a0), · · · , (ad−a0)
and

det(A) = d!|K|

where |K| is the Lebesgue measure of the d-simplex K is Rd. It’s clear to see in 2d that
|K| = 0.5det(A), in 3d as well we get the volume of tetrahedron is det(A)/6 . You can
decompose a parallelopiped into 6 tetrahedron (see Fig. 5.3).

5.1.2 Barycentric Coordinates

A point in space is usually represented using Cartesian coordinates. However, there exist other
coordinate systems that are often more natural in specific contexts. One such system is the
barycentric coordinate system, introduced by August Möbius in 1827.

105



MA643 - Numerical Analysis of Partial Differential Equations Summer Semester 2025

E H

GD

F
C

BA

Figure 5.3: Decomposition of parallelopiped into six tetrahedron. The six tetrahedron FBEC,
BECH, BEGH, BDGE, DABE, and FBEA.

Figure 5.4: René Descartes (31 March 1596 – 11 February 1650, left) and August Möbius (17
November 1790 – 26 September 1868, right).

Definition 5.4 (Barycentric Coordinates). Let {aj}dj=0 be the (d + 1) vertices of a
d-simplex in Rd. The barycentric coordinates of any point x ∈ Rd with respect to these
vertices are the functions {λj(x)}dj=0 satisfying

d∑
j=0

λj(x) aj = x,
d∑

j=0

λj(x) = 1.

Equivalently, component-wise,

d∑
j=0

λj(x) aji = xi, for 1 ≤ i ≤ d.

In this definition, we have (d+ 1) unknowns {λj(x)}dj=0 and (d+ 1) equations: d from
the first condition and one from the second.

Hence, the barycentric coordinates are the solution of the linear system
a01 a11 · · · ad1
a02 a12 · · · ad2
...

... . . . ...
a0d a1d · · · add
1 1 · · · 1



λ0

λ1

...
λd

 =


x1

x2

...
xd

1

 .
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Compactly, we may write[
a0 a1 · · · ad

1 1 · · · 1

]
λ =

[
x

1

]
.

By Cramer’s rule,1 the barycentric coordinates admit a geometric interpretation. Let
x be a point in the d-simplex K, and let Ki(x) denote the simplex formed by replacing vertex
ai of K by x (see Fig. 5.5). Then

λi(x) =
|Ki(x)|
|K|

.

aj ak

ai

x

Ki

K

Figure 5.5: Geometric interpretation of the barycentric coordinates.

Hence, λi(x) is a function of x that vanishes on the face of the d-simplex K opposite
to ai and equals 1 at ai.

Example 5.5. Consider the simplex with vertices a0 = (0, 0), a1 = (0, 1), and a2 = (1, 0).
We compute {λi(x)}2i=0. In two dimensions, the general affine function has the form
a+ bx+ cy. For λ0(x) corresponding to a0, we require

λ0(0, 0) = 1, λ0(0, 1) = 0, λ0(1, 0) = 0.

Thus, 1 0 0
1 0 1
1 1 0

ab
c

 =

10
0

 ,

which gives a = 1, b = −1, and c = −1. Hence using the same ideas we get Barycentric
coordinates as,

λ0(x) = 1− x− y, λ1(x) = y, λ2(x) = x.

1For a linear system Ax = b with A ∈ Rn×n,

xi =
det(Ai)

det(A)
,

where Ai is obtained from A by replacing its ith column with b.
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5.1.3 Affine Mapping

Once the triangulation is constructed, we have many elements K. Defining basis functions
individually on each K would be inefficient. Instead, we define them on a reference element
and map them to each physical element through an affine map.

Definition 5.6 (Affine Map). Let U ⊂ Rm and V ⊂ Rn. A map f : U → V is said to
be affine if, for all {xi}ki=1 ⊂ U and coefficients {βi}ki=1 satisfying

∑k
i=1 βi = 1, we have

f

(
k∑

i=1

βixi

)
=

k∑
i=1

βi f(xi).

For k = 2, affine transformations preserve lines; for k = 3, they preserve planes. More
generally, affine maps preserve parallelism but not necessarily distances or angles.

Example 5.7. 1. Every linear transformation is affine.
2. Let U = V = R2. Then

f(x) = (−2x+ y + 5, 3x+ 8y − 2)

is affine but not linear.

Reference Element

Let K̂ denote the reference simplex spanned by the vectors {ei}di=0 ⊂ Rd, where

e0 = (0, 0, . . . , 0)⊤, e1 = (1, 0, . . . , 0)⊤, . . . , ed = (0, 0, . . . , 1)⊤.

Let ai = FK(ei) for i = 0, 1, . . . , d. The affine map FK : K̂ → K is defined by (see Fig. 5.6)

FK(x̂) = BKx̂+ bK , BK =
[
a1 − a0 · · · ad − a0

]
, bK = a0.

It is straightforward to verify that FK is bijective.

K̂ K
FK

Figure 5.6: Reference map from K̂ to K.

Remark 5.8. Whenever the hat notation (e.g., K̂) is used, it refers to the reference element and
quantities defined on it.
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Lemma 5.9. Let {λi}di=0 be the barycentric coordinates of the d-simplex K ⊂ Rd, and
let FK : K̂ → K be the affine mapping from the reference simplex K̂ to K. Then the
functions

λ̂i = λi ◦ FK , i = 0, 1, . . . , d,

are the barycentric coordinates of the reference simplex K̂.

Proof. Let x̂ ∈ K̂ and define λ̂i(x̂) = λi(FK(x̂)) for i = 0, 1, . . . , d. We must show that
{λ̂i(x̂)}di=0 satisfy

d∑
i=0

λ̂i(x̂)ei = x̂,
d∑

i=0

λ̂i(x̂) = 1.

Let x = FK(x̂) = BKx̂+ bK . Since {λi(x)}di=0 are the barycentric coordinates of K, we
have

d∑
i=0

λi(x) ai = x,
d∑

i=0

λi(x) = 1.

Applying FK and using λ̂i = λi ◦ FK , we immediately obtain

d∑
i=0

λ̂i(x̂) = 1.

For the geometric condition, using ai = BKei + bK , we get

d∑
i=0

λi(x) ai =
d∑

i=0

λ̂i(x̂)(BKei + bK) = BK

(
d∑

i=0

λ̂i(x̂)ei

)
+ bK .

Since the left-hand side equals x = BKx̂+ bK , it follows that

BK

(
d∑

i=0

λ̂i(x̂)ei

)
= BKx̂.

Because BK is invertible, we conclude

d∑
i=0

λ̂i(x̂)ei = x̂.

Hence, the functions λ̂i are indeed the barycentric coordinates of K̂.

This mapping of barycentric coordinates plays a crucial role later, as it allows us to
define basis functions on the reference element K̂ and map them efficiently to each element K
in the triangulation.
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5.1.4 Shape Regularity

The last property we mention for a triangulation is its shape-regularity.

Definition 5.10 (Shape regular). Let K ∈ Th be a triangle (or, more generally, a
d-simplex). Denote by hK the diameter of K, by ρK the diameter of the largest ball
inscribed in K (so that ρK = 2rK when rK is the inradius), and set h = maxK∈Th hK .
The family Th is called shape-regular if there exists a constant C > 0, independent of hK

and ρK , such that for all K ∈ Th
hK

ρK
≤ C.

This condition forbids arbitrarily narrow (“skinny”) elements in the mesh. In particular,
in a shape-regular mesh the ratio hK/ρK is uniformly bounded; see Fig. 5.7 (right) for a non-
shape-regular example where ρK ≪ hK .

a1 a2

a3

ρK

h
K

a1 a2

a3

ρK

h
K

Figure 5.7: Left: a shape-regular triangle with incircle (diameter ρK) and diameter hK . Right:
a non-shape-regular (skinny) triangle; its incircle diameter ρK is much smaller compared with
hK .

A triangulation is called quasi-uniform if it is shape-regular and, in addition, there
exists a constant C > 0 such that

Ch ≤ hK ∀ K ∈ Th,

i.e., the diameters of all elements are of comparable size.

We next record some useful relations between geometric quantities of K and those of
the reference element K̂.
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Lemma 5.11. Let FK : K̂ → K be the affine map

FK(x̂) = BKx̂+ bK ,

with BK ∈ Rd×d invertible. Then

det(BK) =
|K|
|K̂|

, ∥BK∥ ≤ hK

ρK̂
, ∥B−1

K ∥ ≤ ĥ

ρK
,

where ∥·∥ denotes the operator norm induced by the Euclidean vector norm, ĥ = diam(K̂),
and ρK̂ is the diameter of the largest inscribed ball in K̂.

Proof. The Jacobian JFK
is constant and equal to BK , hence the change of variables gives

|K| =
∫
K

1 dx =

∫
K̂

∣∣ det(JFK
)
∣∣ dx̂ = | det(BK)| |K̂|,

which yields the first identity

det(BK) =
|K|
|K̂|

.

For the second inequality recall the operator norm definition

∥BK∥ = sup
ξ ̸=0

∥BKξ∥
∥ξ∥

=
1

ρK̂
sup

∥ξ∥=ρK̂

∥BKξ∥.

By definition of ρK̂ (the diameter of the largest inscribed ball) every vector ξ ∈ Rd with
∥ξ∥ = ρK̂ can be written as a difference ξ = ŷ1 − ŷ2 of two points ŷ1, ŷ2 ∈ K̂ (indeed take the
center x̂0 of the inscribed ball and set ŷ1,2 = x̂0 ± ξ/2). Therefore

∥BKξ∥ = ∥BK ŷ1 −BK ŷ2∥ = ∥FK(ŷ1)− FK(ŷ2)∥ ≤ diam(K) = hK .

Taking the supremum over ∥ξ∥ = ρK̂ and dividing by ρK̂ gives

∥BK∥ ≤ hK

ρK̂
.

The third bound follows by exchanging the roles of K and K̂. Indeed apply the pre-
ceding estimate to the inverse affine map F−1

K (x) = B−1
K x −B−1

K bK , whose linear part is B−1
K ,

and note that diam(K̂) = ĥ and the inscribed-ball diameter of K is ρK . This yields

∥B−1
K ∥ ≤ ĥ

ρK
,

as claimed.
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5.2 Finite Element Space

5.2.1 Polynomial Spaces

Once the domain is triangulated, the next step is to define a suitable function space on it.
Since the method we study is the finite element method, we focus on finite-dimensional spaces,
denoted by PK , which are typically composed of polynomials. We denote the dimension of PK

by NK .

Our primary focus will be on triangular elements. For such elements, we define the
space of polynomials of degree less than or equal to k, denoted by Pk(K):

Pk(K) =

p : K → R

∣∣∣∣∣∣ p(x) =
∑
|α|≤k

aα xα, x ∈ K

 ,

where the coefficients aα ∈ R are constants, and K ∈ Th.

Example 5.12. If k = 1, we obtain the space of linear polynomials:

P1(K) =

{
p : K → R

∣∣∣∣∣ p(x) = a0 +
d∑

i=1

aixi

}
.

There are (d+ 1) coefficients, hence dim
(
P1(K)

)
= d+ 1.

For instance:
• In one dimension (d = 1), the basis is {1, x}.
• In two dimensions (d = 2), the basis is {1, x, y}.

In general, the dimension of Pk is

dim(Pk) =

(
d+ k

k

)
.

For k = 1, this gives
(
d+1
1

)
= d+ 1, as expected.

Although we will not explore rectangular elements in depth, we briefly mention their
polynomial spaces for completeness. For a rectangular (or tensor-product) element K, we define

Qk(K) =

p : K → R

∣∣∣∣∣∣ p(x) =
∑

|α|∞≤k

aα xα, x ∈ K

 ,

where |α|∞ = maxi∈{1,...,d} αi.
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Example 5.13. If d = 2 and k = 1, then

Q1(K) =

p : K → R

∣∣∣∣∣∣ p(x) =
∑

|α|∞≤1

aα xα, x ∈ K

 .

The possible multi-indices α are (0, 0), (1, 0), (0, 1), and (1, 1). Hence, a general polyno-
mial in Q1 can be written as

p(x, y) = c0 + c1x+ c2y + c3xy.

Such elements are called bilinear elements, as the polynomial is linear in each argument
separately.
In general,

dim(Qk) = (k + 1)d.

For example, for d = 2 and k = 1, we have dim(Q1) = 4, consistent with the basis
{1, x, y, xy}.

5.2.2 Nodal Functionals

After defining the polynomial space PK , the next step is to describe how these polynomials
are evaluated. For instance, in 2D, one can define a linear polynomial by specifying its values
at the vertices of a triangle, or alternatively by its values at the midpoints of the edges. Such
point evaluations can be viewed as functionals acting on PK .

Hence, we must define a suitable collection of functionals on PK . In practice, these
functionals are defined on a slightly larger space — typically a subspace of Cs(K) — to ensure
sufficient smoothness. Since PK ⊂ Cs(K) for some s ∈ N ∪ {0}, we take our functionals to be
mappings

ΦK,i : Cs(K) −→ R.
The number of functionals equals the dimension of PK , as their role is to uniquely determine
the coefficients of a polynomial in PK .

Let
ΣK = {ΦK,i}NK

i=1, ΦK,i : Cs(K) → R,
be a set of NK linearly independent functionals. We choose exactly NK functionals so that
they capture all degrees of freedom associated with PK .

Typical examples of functionals used in FEM are:

1. Point evaluation: Φ(v) = v(x) for some x ∈ K.

2. Derivative evaluation: For K ⊂ R, Φ(v) =
dv

dx
(x) for x ∈ K.

3. Integral mean value: For K ⊂ Rd with d ≥ 2,

Φ(v) =
1

|E|

∫
E

v(s) ds,
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where E is an edge (or face) of K.

The smoothness parameter s is chosen so that all ΦK,i are continuous on Cs(K). For
example, the derivative functional requires s = 1, while point and integral evaluations require
s = 0.

Definition 5.14 (Unisolvence). The polynomial space PK is said to be unisolvent with
respect to the set of functionals {ΦK,i}NK

i=1 if, for every a = (a1, . . . , aNK
)⊤ ∈ RNK , there

exists a unique p ∈ PK such that

ΦK,i(p) = ai, 1 ≤ i ≤ NK .

Intuitively, the functionals ΦK,i act as measurement operators that extract the coeffi-
cients (or degrees of freedom) of a polynomial in PK . Thus, for every a ∈ RNK , there exists
exactly one polynomial p ∈ PK whose functionals evaluate to the prescribed values ai.

To construct a corresponding basis of PK , let {ei}NK
i=1 denote the standard basis of RNK ,

where ei has 1 in the ith position and zeros elsewhere. For each ej, there exists a unique
polynomial φK,j ∈ PK such that

ΦK,i(φK,j) = δij, 1 ≤ i, j ≤ NK .

The set of polynomials {φK,j}NK
j=1 forms a local basis of PK associated with the functionals ΣK .

Remark 5.15. The unisolvence of PK with respect to ΣK means that {ΦK,i}NK
i=1 forms a basis

of the dual space P∗
K . Hence, the sets {ΦK,i}NK

i=1 and {φK,i}NK
i=1 can be viewed as dual bases in

the algebraic sense.

5.2.3 Finite Element

Now, we are in a position to formally define what a finite element is.

Definition 5.16 (Finite Element). A triple (K,PK ,ΣK) is called a finite element,
where

• K is an open cell (or element) in the triangulation Th,
• PK is a local finite-dimensional function space defined on K, and
• ΣK is a set of nodal functionals acting on PK .

The set of functionals ΣK is assumed to be unisolvent for PK , that is, for every a =
(a1, . . . , aNK

)⊤ ∈ RNK there exists a unique p ∈ PK such that

ΦK,i(p) = ai, i = 1, . . . , NK .

This definition of a finite element first appeared in the classical monograph by Ciarlet
and is therefore often referred to as the finite element in the sense of Ciarlet [5].

Now, we look at certain finite elements.
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Lagrange Finite Elements

The most widely used finite element is the Lagrange finite element, which is a generalization
of the classical Lagrange interpolant. Let us briefly recall the Lagrange interpolation formula.
Given points {xi}mi=0, the Lagrange interpolating polynomial of order m is defined such that
the jth basis function satisfies

Lm
j (xi) = δij, 0 ≤ i, j ≤ m,

i.e., it takes the value 1 at the node xj and 0 at all other nodes. This idea naturally motivates
the definition of the Lagrange finite element.

Figure 5.8: Joseph-Louis Lagrange (25 January 1736 – 10 April 1813).

Let Th be a triangulation of Ω, and let PK be the space of polynomials of degree ≤ k,
i.e. PK = Pk(K). The nodal functionals ΣK are defined as point evaluations on K, that is,

ΦK,i(p) = p(ai), p ∈ PK , ai ∈ K.

The points {ai} are referred to as nodes . Depending on the polynomial degree k, the number
and placement of nodes are chosen accordingly.

Linear Elements (k = 1). For k = 1, we have P1 elements, whose dimension is (d + 1).
Hence, we select (d + 1) nodes. The simplest choice is to take the vertices of the triangle (or
tetrahedron in 3D) as the nodes. Figure 5.9 shows the nodal positions for P1 elements in two
and three dimensions.

K K

Figure 5.9: Nodes for P1 linear elements in 2D and 3D.

Once the nodes are identified, the next step is to determine the corresponding local
basis functions. For a P1 element, the local basis function associated with node i must satisfy

ΦK,j(φi) = δij, 1 ≤ i, j ≤ NK ,

which in the case of point evaluations means

φi(aj) = δij.
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We have already encountered such functions — the barycentric coordinates {λi}d+1
i=1 . For in-

stance, in 2D, if the vertices of a triangle are {ai}3i=1, then φi = λi satisfies the above property.
Thus, the barycentric coordinates form the local basis of P1. See Fig. 5.10 for a schematic
representation of the basis functions in 2D.

a1

a2

a3

K 1

Figure 5.10: Local basis functions for P1 elements in 2D.

Note that the local basis of P1 is not the same as the standard algebraic basis of P1. In
two dimensions, the local basis is given by {1− x− y, x, y}, whereas the standard polynomial
basis is {1, x, y}.

The nodal functionals are unisolvent with respect to P1, since this space possesses a
corresponding local basis associated with ΣK .

Quadratic Elements (P2). For quadratic elements, we consider the space P2, whose dimen-
sion is

dim(P2) =
(d+ 1)(d+ 2)

2
.

Compared to P1 elements, P2 elements have additional nodes — specifically, there are

d(d+ 1)

2

extra nodes corresponding to the midpoints of the edges. Hence, the nodal values are taken
both at the vertices and at the midpoints of the edges joining these vertices.

Let aij denote the midpoint of the edge connecting the vertices ai and aj. Then, the
complete set of nodes for a P2 element is

{ai}d+1
i=1 ∪ {aij}i<j.

Figure 5.11 shows the nodal configuration for P2 elements in two and three dimensions.

K
K

Figure 5.11: Nodes for P2 quadratic elements in 2D and 3D.
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The local basis functions for P2 elements can be expressed in terms of the barycentric
coordinates {λi}d+1

i=1 as
φi = λi(2λi − 1), i = 1, . . . , d+ 1,

for vertex-associated basis functions, and

φij = 4λiλj, i, j = 1, . . . , d+ 1, i < j,

for edge-associated basis functions.

Since the barycentric coordinates λi satisfy λi(aj) = δij, we observe that

φi(aj) = δij, φij(akl) =

{
1, if {i, j} = {k, l},

0, otherwise.

Moreover, since λi(aij) = λj(aij) =
1
2
, the midpoints satisfy

λi(aij) = λj(aij) =
1
2
, λk(aij) = 0 for k ̸= i, j.

These properties show that the basis functions {φi, φij} are unisolvent with respect to
the set of nodal functionals corresponding to the vertices and edge midpoints.

Figure 5.12 illustrates the local basis functions for a P2 element in 2D. The functions
φij in two dimensions are often referred to as bubble functions , as they attain their maximum
value inside the element and vanish at all vertices.

a1 a2

a3

a12

a23a31

K

a1 a2

a3

a12

a23a31

K

Figure 5.12: Local basis functions for P2 elements in 2D.

Cubic Elements (P3). For cubic elements, the local polynomial space is P3, whose dimension
is

dim(P3) =
(d+ 3)(d+ 2)(d+ 1)

6
.

The number of nodes increases accordingly. Since this is a cubic polynomial space, we require
four points along each edge of the d-simplex, together with additional points inside the higher-
dimensional faces.

Let us illustrate this in 2D and 3D.

In 2D: A P3 element has 10 nodes:

• 3 nodes at the vertices,

• 2 nodes on each of the 3 edges (giving 6 edge nodes),
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• 1 node in the interior of the triangle.

The edge nodes are placed at equal distances along each edge, and the interior node is located
at the centroid of the triangle. See Fig. 5.13 for the nodal layout.

In 3D: A P3 tetrahedral element has 20 nodes:

• 4 at the vertices,

• 2 on each of the 6 edges (giving 12 edge nodes),

• 4 on the faces of the tetrahedron (one on each face, typically near the centroid).

The placement follows the same principle as in 2D — uniformly distributed along edges, and
symmetrically located within faces.

K K

Figure 5.13: Nodes for P3 cubic elements in 2D and 3D.

The local basis functions for P3 elements can be conveniently expressed using barycentric
coordinates {λi}d+1

i=1 as follows:

φi =
1
2
λi(3λi − 1)(3λi − 2), i = 1, 2, . . . , d+ 1,

φij =
9
2
λiλj(3λi − 1), i, j = 1, 2, . . . , d+ 1, i ̸= j,

φijk = 27λiλjλk, i, j, k = 1, 2, . . . , d+ 1, i < j < k.

In 2D, the functions φijk are referred to as bubble functions , since they attain their
maximum value inside the element and vanish at all vertices and edges, resembling a “bubble”
on the surface.

Crouzeix Reaviart Finite Element

All the finite elements discussed so far have been of the Lagrange type, where the degrees of
freedom are defined through point evaluations at the vertices (or additional nodal points) of
the elements. However, other types of functionals can be used as well. For instance, instead of
using vertex evaluations, we can define the functionals using midpoint values or edge averages.

Consider PK = P1(K) and define the following functionals:

ΦCR
i (v) = v(ai−1,i+1), for d = 2,

ΦCR
i (v) = v(ai−2,i−1,i+1), for d = 3,

where ai−1,i+1 (or ai−2,i−1,i+1 in 3D) denotes the midpoint of the edge (or face) opposite to
vertex i.
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It can be verified that, for linear polynomials,

1

|E|

∫
E

v(s) ds = v(m), (5.1)

where m is the midpoint of the edge (or face) E. Hence, the cell average of a linear polynomial
over an edge (or face) is equivalent to the point evaluation at its midpoint.

This property is particularly useful in problems where the continuity of the solution is
required along edges or faces, rather than at the vertices. The finite element defined by the
triplet

(K, P1, Σ
CR
K )

is called the Crouzeix–Raviart (CR) finite element, named after the French mathematicians
Michel Crouzeix and Pierre-Arnaud Raviart. Based on Eq. (5.1), Fig. 5.14 shows the placement
of nodes for the CR element in 2D and 3D.

K K

Figure 5.14: Nodes for linear Crouzeix–Raviart elements in 2D and 3D.

The local basis functions for the CR element are given in terms of the barycentric
coordinates {λi}d+1

i=1 as
φi = 1− d λi, i = 1, 2, . . . , d+ 1.

These basis functions satisfy
φi(mj) = δij,

where mj are the midpoints of the edges (or faces) (see Fig. 5.15 for basis function in 2D).

The existence of such local basis functions implies that ΣCR
K is unisolvent with respect

to P1.

m1

m2m3

K

1

Figure 5.15: Basis for linear Crouzeix–Raviart element in 2D.
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Exotic Elements

Besides Lagrange and Crouzeix–Raviart elements, we can construct other finite elements that
satisfy specific continuity or derivative conditions of interest. For example, suppose we require
not only the function values but also the directional derivatives to match at the vertices of the
elements. Such elements are known as Hermite finite elements.

In one dimension, this idea corresponds to the classical Hermite interpolant. Given two
points {xi, xj}, and the data values f(xi), f ′(xi), f(xj), and f ′(xj), we can construct a unique
cubic polynomial p ∈ P3 that satisfies

p(xi) = f(xi), p′(xi) = f ′(xi), p(xj) = f(xj), p′(xj) = f ′(xj).

Thus, the Hermite interpolant in 1D matches both the function and its first derivative at the
endpoints.

This idea can be extended to two or three dimensions. In 2D, a cubic Hermite element
is based on P3, whose dimension is 10. To uniquely determine a polynomial in this space, we
must specify 10 independent degrees of freedom.

A typical choice is as follows:

• function values at the three vertices,

• the two directional derivatives (along the local coordinate directions) at each vertex,
providing 3× 3 = 9 values,

• one additional value at the centroid (or interior point) of the triangle.

These together provide 10 degrees of freedom, sufficient to define the cubic Hermite interpolant
in two dimensions.

Figure 5.16 illustrates the placement of nodes and associated derivative degrees of free-
dom for the 2D Hermite element.

K

Figure 5.16: Nodes and derivative degrees of freedom for the cubic Hermite element in 2D.

We will not delve into the details of such higher-order or mixed-type elements here.
However, for a comprehensive overview of various classical and exotic finite elements, readers
are encouraged to consult the Periodic Table of Finite Elements5.17 an excellent resource
summarizing the properties and relationships among different element families.
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Figure 5.17: Periodic Table of Finite Elements

5.2.4 Finite Element Space

Once the local functionals are defined on each element, they can be combined to form global
functionals over the entire triangulation.

Global Functional. Let N denote the total number of global nodes of the triangulation Th.
Based on the local functionals {ΦK,i}NK

i=1, we define the corresponding global functionals

{Φi}Ni=1 :
{
v ∈ L∞(Ω) : v|K ∈ PK ∀K ∈ Th

}
−→ R.

Here, the restriction v|K ∈ PK is understood in the sense that the polynomial on K is extended
continuously up to the boundary ∂K.

The restriction of a global functional Φi to an element K defines a local functional in
ΣK , that is,

Φi|Cs(K) = ΦK,i, i = 1, . . . , NK ,

where {ΦK,i}NK
i=1 are assumed to be unisolvent on PK .

For each global functional Φi, we define the associated patch ωi as the union of all mesh
cells K for which there exists a p ∈ PK satisfying Φi(p) ̸= 0, i.e.,

ωi =
⋃

K∈Th
Φi(p)̸=0

K.
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Example 5.17. Let d = 2, and suppose Φi is defined as the nodal value of a function v
at a point x ∈ K. Then:

• If x ∈ K̊ (the interior of K), then ωi = K.
• If x lies on an edge of K (but not at a vertex), then ωi is the union of all triangles

sharing that edge.
• If x is a vertex of K, then ωi is the union of all triangles sharing that vertex.

See Fig. 5.18 for a schematic illustration of the different cases.

x x
x

Figure 5.18: Examples of patches ωi for different node locations in 2D.

Finite Element Space. Now we are in a position to define what a finite element space is.

Definition 5.18 (Finite Element Space). A function v : Ω → R with v|K ∈ PK for
all K ∈ Th is said to be continuous with respect to the global functionals Φi if

Φi(v|K1) = Φi(v|K2) ∀K1, K2 ⊂ ωi.

The corresponding finite element space is defined as

Vh =
{
v ∈ L∞(Ω) : v|K ∈ PK for all K ∈ Th, v is continuous w.r.t. {Φi}Ni=1

}
.

The global basis functions {φi}Ni=1 of Vh are defined by the duality condition

Φi(φj) = δij, 1 ≤ i, j ≤ N.

For Lagrange linear elements, these global basis functions take the familiar “hat” shape, as
shown in Fig. 5.19.

After defining the finite element space Vh, we need to ensure that its functions possess
the same regularity as the space in which our original PDE was formulated — typically H1

0(Ω)
or H1(Ω).

Theorem 5.19. If, for every K ∈ Th, we have PK ⊂ H1(K) and Vh ⊂ C(Ω), then
Vh ⊂ H1(Ω). Moreover, if in addition v = 0 on ∂Ω for all v ∈ Vh, then Vh ⊂ H1

0(Ω).

Proof. Let v ∈ Vh. We need to show that v ∈ H1(Ω), i.e., Dαv ∈ L2(Ω) for all |α| ≤ 1.
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ai

Figure 5.19: Global basis function φi for a Lagrange linear finite element in 2D (the “hat
function”).

Since Vh ⊂ C(Ω), we immediately have v ∈ L2(Ω). It remains to show that Dαv ∈ L2(Ω)
for all |α| = 1, i.e., the weak derivative exists.

For each element K ∈ Th, set

w := Dα(v|K) ∈ L2(K),

since PK ⊂ H1(K) implies that derivatives of v|K are square-integrable.

Let φ ∈ C∞
0 (Ω). Using integration by parts on each K, we have∫

Ω

(wφ+ vDαφ) dx =
∑
K∈Th

∫
K

(Dαv φ+ vDαφ) dx

=
∑
K∈Th

∫
∂K

v|K φnα
K ds

=
∑
E∈Eh

∫
E

v|E φnα
E ds,

where Eh is the set of all faces (edges in 2D), and nα
E denotes the α-component of the unit outer

normal on E.

Now, the boundary Eh can be divided into two parts: faces on ∂Ω and interior faces.
For E ⊂ ∂Ω, φ = 0 since φ ∈ C∞

0 (Ω). For an interior face E shared by elements K and K ′, the
continuity v ∈ C(Ω) ensures

v|E⊂∂K = v|E⊂∂K′ and nα
E|K = −nα

E|K′ .

Hence, the contributions from both sides cancel, and the right-hand side vanishes. Therefore,
w is the weak derivative of v, proving that v ∈ H1(Ω).

According to Theorem 5.19, continuity of v across the faces of neighboring elements is
sufficient to guarantee that Vh ⊂ H1(Ω). To ensure this continuity, it is necessary that the local
polynomial spaces have enough degrees of freedom along each face.

For instance, in the case of the Lagrange linear finite element, for any face E ⊂ ∂K (a
(d−1)-simplex), d points uniquely determine a function in P1(E). In 2D, two points determine
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a line. Therefore, the finite element space of piecewise linear functions can be defined as

Vh := {v : Ω → R : v|K ∈ P1(K) ∀K ∈ Th, v continuous at interior vertices} .

If we require the homogeneous Dirichlet boundary condition, we define

Vh0 :=
{
v : Ω → R : v|K ∈ P1(K) ∀K ∈ Th,

v continuous at interior vertices, v = 0 on boundary vertices
}
.

Similarly, for higher-order Lagrange elements, Vh ⊂ H1(Ω) since each face E contains
sufficient nodal points to ensure continuity of the polynomial across element boundaries.

Nonconforming Elements. For the Crouzeix–Raviart (CR) element discussed earlier, the
continuity condition fails because along an edge or face, only one point determines the linear
polynomial, which does not ensure matching traces on both sides. Hence, Vh ̸⊂ H1(Ω) but
rather Vh ⊂ V , where V denotes a larger, less regular space. In this case, the finite element is
called a nonconforming finite element , and its analysis and implementation differ from those
of conforming finite elements.

5.3 Implementation of FEM

One key aspect of the finite element method is its implementation. After introducing the
concept of finite elements, let us now look at their application to the Poisson equation in 2D.
The ideas can easily be extended to general elliptic operators.

We assume Vh to be the space of linear Lagrange finite elements defined on triangles.
Let Th be the triangulation of Ω, whose elements are denoted by K. Let K̂ be the reference
element with vertices (0, 0), (1, 0), and (0, 1). Let FK denote the affine map from K̂ to K,
defined by

FK(x̂) = BKx̂+ bK ,

where BK ∈ R2×2 and bK ∈ R2. Let F−1
K be the inverse map from K to K̂.

Let (K̂,PK̂ ,ΣK̂) be the finite element on K̂ and (K,PK ,ΣK) be the finite element on
K. As seen in Section 5.1.2, the barycentric coordinates on K can be expressed using those on
K̂ as λ = λ̂ ◦ F−1

K . Similarly, any polynomial (and hence any basis function) defined on K can
be written in terms of a polynomial defined on K̂. If p̂ ∈ PK̂ is a polynomial on K̂, then

p = p̂ ◦ F−1
K ∈ PK .

Since we are considering Lagrange finite elements, if âi is a node on K̂, then its image under
FK ,

ai = FK(âi),

is a node on K.
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Gradient Transformation. The bilinear form for the Poisson equation involves gradients.
Hence, before we apply the method, let us see how the gradient of a polynomial on PK relates
to that of p̂ ∈ PK̂ . We have

∇p(x) = ∇p(FK(x̂))

= ∇ (p ◦ FK) (x̂)

=

(
∂p̂

∂x1

(x̂),
∂p̂

∂x2

(x̂)

)
.

Using the chain rule, we get

∂p̂

∂x1

(x̂) =
∂p̂

∂x̂1

∂x̂1

∂x1

+
∂p̂

∂x̂2

∂x̂2

∂x1

,

and similarly,
∂p̂

∂x2

(x̂) =
∂p̂

∂x̂1

∂x̂1

∂x2

+
∂p̂

∂x̂2

∂x̂2

∂x2

.

Hence,

∇p̂(x̂) =

[∂x̂1

∂x1

∂x̂2

∂x1
∂x̂1

∂x2

∂x̂2

∂x2

][ ∂p̂
∂x̂1

∂p̂
∂x̂2

]
.

Therefore,
∇p(x) = (B−1

K )⊤ ∇̂p̂(x̂). (5.2)

5.3.1 Meshing

Solving a PDE using the finite element method is broadly divided into three major steps. The
first is the triangulation (or meshing) of the domain. There are various ways to triangulate a
domain, and in fact, the topology of triangulation itself is an active area of research within a
branch of mathematics known as Discrete Geometry.

The triangulation can be either structured (see Fig. 5.20, left) or unstructured (see
Fig. 5.20, right). In either case, the important property is that the triangulation must be
shape-regular. Certain PDEs also require specific triangulations — for example, Delaunay
triangulations. For most practical applications, it is preferable to use external triangulation
software, especially for complex geometries. A popular choice is TetGen [17].

Figure 5.20: Structured grid (left) and unstructured grid (right).

For simple domains, such as the unit square shown in Fig. 5.20 (left), it is easy to
generate a triangulation programmatically. For a triangulation, we need to keep track of two
quantities:
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1. the coordinates of the vertices, and

2. the connectivity (cells or elements), i.e., which vertices form each triangle.

It is convenient to use a pre-existing meshing package in Python; one such lightweight
package is meshzoo. To install it, use:
pip install meshzoo

Suppose the grid has nx+1 points in each direction. Then meshzoo returns two arrays:

• points: of size (nx + 1)2 × 2, containing the coordinates of all vertices,

• cells: of size (#triangles)×3, containing the indices of the vertices forming each triangle.

A simple pseudocode for generating the mesh of a unit square is shown below.
def msh_unit_square(nx):

xs = np.linspace(0, 1, nx + 1) # Create an array of size nx+1
ys = np.linspace(0, 1, nx + 1)
points , cells = meshzoo.rectangle_tri(xs, ys, variant="up")
return points , cells

The keyword variant in the above code can take the values "up", "down", or "zigzag".
Figure 5.21 shows the resulting grids for each variant.
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Figure 5.21: Meshes generated by meshzoo using variant="up" (left), "down" (middle), and
"zigzag" (right).

Let us now look at what this code produces. For the grid in Fig. 5.21 (left), we obtain:

• points as an array of size 9× 2, and

• cells as an array of size 8× 3.

We number the grid points from 0 to 8, starting from the bottom left corner and moving from
left to right, then bottom to top. Thus, cells[0] returns [0, 1, 4], which corresponds to the
triangle formed by vertices 0, 1, and 4. If we call points[cells[0]], we obtain the coordinates
of these vertices, e.g., [0, 0] for vertex 0.

5.3.2 Assembly

Once we have the triangulation, the next step is to assemble the system of equations. Let
Vh ⊂ H1

0(Ω) be spanned by {φi}NK−1
i=0 , i.e., dim(Vh) = NK . Using the standard Galerkin finite
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element method, we obtain a system of equations of the form

NK−1∑
j=0

aijuj = bi, for i = 0, 1, . . . , NK − 1,

where {uj}NK−1
j=0 are the unknown coefficients. Further, the non-zero entries of the stiffness

matrix A and load vector b are given by

aij =

n_cells−1∑
k=0

∫
Kk

∇φj · ∇φi dx, bi =

n_cells−1∑
k=0

∫
Kk

f φi dx.

Hence, we need to compute the local contributions on each cell and then combine them
to obtain the global matrix and vector. Let us consider the above integrals on a single cell K.

Transformation to the Reference Element. We can transform the above integrals to the
reference element K̂. We write φi = φ̂i ◦ F−1

K , and from Eq. (5.2), we have

∇φi = (B−1
K )⊤ ∇̂φ̂i(x̂).

Hence, ∫
K

∇φi · ∇φj dx =

∫
K̂

(
(B−1

K )⊤∇̂φ̂i

)
·
(
(B−1

K )⊤∇̂φ̂j

)
det(BK) dx̂

=

∫
K̂

(
∇̂φ̂i

)⊤
B−1

K (B⊤
K)

−1∇̂φ̂j det(BK) dx̂

=

∫
K̂

(
∇̂φ̂i

)⊤ (
B⊤

KBK

)−1 ∇̂φ̂j det(BK) dx̂.

Similarly, we can transform the right-hand side to∫
K

f(x)φi(x) dx =

∫
K̂

f̂(x̂) φ̂i(x̂) det(BK) dx̂.

Numerical Quadrature. To approximate these integrals over each mesh cell, we use the
Gaussian quadrature formula. Since we are dealing with polynomial basis functions, Gaussian
quadrature is particularly useful because an n-point Gaussian rule is exact for polynomials of
degree up to 2n− 1. The integral over K̂ can be approximated as

∫
K̂

f(x̂) dx̂ ≈
Nq−1∑
q=0

wq f(x̂q),

where Nq is the number of quadrature points, wq are the quadrature weights, and x̂q are the
quadrature points. Here again we see the advantage of using a reference element: we only need
to compute {x̂q, wq} once for K̂, and then use them for all mesh cells.
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Remark 5.20. We may encounter cases where f(·) is not a polynomial, e.g., f(x) = sin(x), or
when the matrix A contains non-constant coefficients (e.g., a diffusion coefficient a(x)). In such
cases, a numerical error arises because Gaussian quadrature is exact only for polynomials. To
mitigate this, one can approximate f(x) using the finite element basis functions, i.e.,

f(x) ≈
NK−1∑
i=0

fi φi(x),

and then apply a sufficiently high-order quadrature rule. However, numerical errors can still
occur if the approximation is not accurate enough. Such errors are sometimes referred to as
variational crimes .

Once the local matrices are assembled, we combine them to form the global matrix.
Each local matrix contributes values at p nodes, where p depends on the polynomial degree of
the finite element. For example, for linear elements in 2D, p = 3. When we assemble all local
matrices, the global matrix becomes larger, and the entries corresponding to shared nodes are
summed due to the continuity across elements.

To illustrate the process, consider the grid shown in Fig. 5.22, which has 8 cells and 9
nodes. For simplicity, assume the domain is [0, 2]2. Cell I is formed by the vertices {0, 8, 1}. The
only thing we must ensure is that all triangles have the same orientation, i.e., counterclockwise.
We use P1 Lagrange finite elements for this problem. Since we are using linear elements, the
nodes are located at the vertices of each triangle.
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Figure 5.22: Example of a grid used to solve the Poisson equation using FEM.

Now, the triangulation presented in Fig. 5.22 has 9 nodes and hence 9 unknowns in the
system of equations. We write our numerical solution

uh(x) =
8∑

i=0

ui Φi(x),

where {Φi(x)}8i=0 are the global basis functions and {ui}8i=0 are the nodal values. As seen
previously, the assembly of the global matrix follows from that of the local matrices. Hence,
we first assemble the matrix locally and then, using continuity along the edges, assemble it
globally.

We can notice that all the triangles are of equal area, i.e., det(BK) = 0.5. One important
point to consider here is that the orientation of each cell is important; otherwise, the area
becomes negative.
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Now let us consider Cell I with vertices {0, 8, 1}. Let FK be the reference map from
K̂ to KI, where e0 := (0, 0) is mapped to a8, e1 := (1, 0) is mapped to a1, and e2 := (0, 1) is
mapped to a0. Hence, in the affine map FKI

(x̂) = BKI
x̂+ bKI

we have

bKI
=

[
0
1

]
, BKI

=
[
a1 − a8 a0 − a8

]
=

[
0 1

−1 0

]
,

and therefore

FKI
(x̂) =

[
x̂2

−x̂1 + 1

]
.

Also,

B⊤
KI
BKI

=

[
1 0

0 1

]
.

To compute the stiffness matrix entries, using the change of variables we have∫
KI

∇φj · ∇φi dx =

∫
K̂

∇̂φ̂⊤
j

(
B⊤

KI
BKI

)−1 ∇̂φ̂i det(BKI
) dx̂ =

∫
K̂

∇̂φ̂⊤
j ∇̂φ̂i det(BKI

) dx̂.

On the reference triangle, the three basis functions are

φ̂0 = 1− x̂1 − x̂2, φ̂1 = x̂1, φ̂2 = x̂2.

Hence, their gradients are

∇̂φ̂0 =

[
−1

−1

]
, ∇̂φ̂1 =

[
1

0

]
, ∇̂φ̂2 =

[
0

1

]
.

Since the bilinear form is symmetric, we only need to compute the upper-triangular
entries of the local matrix, i.e., a00, a11, a88, a01, a08, and a18.

Now,

a00 =

∫
KI

∇φ0 · ∇φ0 dx =

∫
K̂

∇̂φ̂⊤
2

(
B⊤

KI
BKI

)−1 ∇̂φ̂2 det(BKI
) dx̂

=

∫
K̂

[
0 1

] [0
1

]
0.5 dx̂ = 0.5× 0.5 = 0.25.

Similarly,
a11 = 0.25, a88 = 0.5.

Now, let us move to the off-diagonal elements. Here we notice that

a01 =

∫
KI

∇φ1 · ∇φ0 dx =

∫
K̂

∇̂φ̂⊤
1

(
B⊤

KI
BKI

)−1 ∇̂φ̂2 det(BKI
) dx̂

=

∫
K̂

[
1 0

] [0
1

]
0.5 dx̂ = 0.
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Similarly,
a05 = −0.25, a18 = −0.25.

After the local assembly we obtain the local matrix AI as

AI =
1

4

 1 0 −1

0 1 −1

−1 −0 2

 .

Now, let us compute the right-hand side. For simplicity, we assume f to be a constant
c. Then

bIi =

∫
K̂

c φ̂i(x̂) det(BKI
) dx̂

= 0.5c

∫
K̂

φ̂i(x̂) dx̂

=
0.5c

6
,

where we have used that
∫
K̂
φ̂i(x̂) dx̂ is the same for all i and equals 1/6. In case f is not

constant, we follow the ideas in Remark 5.20. Hence, we get a local system of equations of the
form

AIu
I = bI,

where uI =
[
u0 u1 u8

]⊤.

Now, one can perform such local assembly over each element and obtain local matrices
Ak and local right-hand sides bk, for k = I, II, . . . ,VIII. Let A be the 9 × 9 global stiffness
matrix corresponding to the finite element space and b be the global right-hand side. Then,
using the local assemblies, we can compute them.

Let us try to understand this by combining four elements from their local matrices into
the global matrix. For this, we consider elements I, II, III, and V. Let us denote their local
matrix entries by akij, where k = I, II, III,V. Then the global matrix has the structure shown
below: 

aI00 + aII00 + aIII00 aI01 + aII01 aII02 + aIII02 aIII04 aI08

aI11 + aII11 aII12 aI18

aII22 + aIII22 aIII24

aIII44

aV66 aV67 aV68

aV77 aV78

aI88 + aV88


For compactness, we have shown only the upper-triangular part of the matrix.
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We can observe that the entry corresponding to a00 has three local contributions, as
node 0 is shared by three elements. Similarly, other matrix entries accumulate contributions
from all elements sharing the corresponding nodes.

In general, when all local matrices are assembled, the global entry a00 will have α local
contributions, where α is the number of cells containing node 0. In our case, α = 6.

It is also important to mention that not all local entries akij are the same. For example,
in cell I, aI00 = 0.25, whereas in cell II, aII00 = 0.5. The same pattern of assembly applies to the
right-hand side as well.

Remark 5.21. While using the affine map from K̂ to K, any node of K̂ can be mapped to any
node of K. That is, if {0̂, 1̂, 2̂} are the nodes of K̂ and {0, 8, 1} are the nodes of K, then 0̂
can be mapped to 0, 8, or 1. The only thing to remember is that the new nodes should still
preserve the counter-clockwise orientation. For example, 1̂ should be mapped to 8 and not 1,
because then {0, 1, 8} would be oriented clockwise.

Algorithm 2 presents the local assembly of the element and Algorithm 3 presents the
global assembly.
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Algorithm 2 Local Element Matrix Assembly for Linear Triangular Element

Given: Triangle vertex coordinates X ∈ R3×2 with rows X0 = (x0, y0), X1 =
(x1, y1), X2 = (x2, y2)

Find: Element Area |K|, Local stiffness matrix Ae ∈ R3×3

Step 1: Compute Jacobian and Element Area
Form the Jacobian matrix:

BK =

[
x1 − x0 x2 − x0

y1 − y0 y2 − y0

]

Compute determinant: det(BK)
Compute element area: |K| = 1

2
| det(BK)|

Step 2: Gradients on the Reference Element
Define gradients of barycentric basis functions on the reference triangle:

Gref =

−1 −1

1 0

0 1



Step 3: Map Gradients to the Physical Element
Compute inverse-transpose of the Jacobian: J−⊤

Compute physical gradients:

∇φ = Gref B
−⊤
K (each row is ∇φi)

Step 4: Form Local Stiffness Matrix
Initialize Ae = 03×3

for i = 0 to 2 do
for j = 0 to 2 do
Ae[i, j] = |K| (∇φi · ∇φj)

end for
end for

return |K|, Ae
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Algorithm 3 Global Assembly of Linear Triangular Finite Element Matrices

Given: Set of node coordinates points = {(xi, yi)}Ni=1, set of triangular cells cells =
{(i1, i2, i3)}, constant right-hand side function fc(x, y)

Find: Global stiffness matrix A ∈ RN×N , load vector b ∈ RN

Step 1: Initialization
Let N = number of nodes
Initialize global matrices: A = 0N×N , b = 0N

Step 2: Loop over all elements
for each element K in cells do

Extract vertex coordinates X = points[K] ∈ R3×2

Compute local quantities using Algorithm 2:

|K|, Ae = LocalElementMatrices(X)

Step 2.1: Assemble local stiffness matrix into global matrix
for i = 0 to 2 do

for j = 0 to 2 do
A[K[i], K[j]] += Ae[i, j]

end for
end for

Step 2.2: Assemble load vector
for i = 0 to 2 do
b[K[i]] += fc · |K|/3

end for
end for

return A, b

5.3.3 Boundary Conditions

The last step in the implementation is the treatment of boundary conditions. One can notice
that without applying boundary conditions, the global stiffness matrix is non-invertible, as the
sum of each row is zero. Hence, we must modify the system. (You may recall a similar issue in
the finite difference method for the pure Neumann problem.)

A convenient way to implement the boundary conditions is to partition the global
matrix into four blocks:

A =

[
Ain B

B⊤ ABC

]
,

where Ain corresponds to the part associated with the inner nodes and is of size M ×M (with
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M being the number of non-Dirichlet nodes). ABC corresponds to the Dirichlet portion of the
domain and is of size (N − M) × (N − M). The matrix B represents the coupling between
inner and boundary nodes. These matrices need not be square and can be rectangular.

Similarly, we partition the right-hand side vector into two parts, bin and bBC. To
impose the Dirichlet boundary conditions, we replace ABC by the identity matrix of size (N −
M)× (N −M) and set bBC to the corresponding Dirichlet values.

We then have two systems of equations:

Ainuin +BuBC = bin,

B⊤uin + IuBC = g.

We do not need to solve the second system explicitly. Hence, the modified system can be
written as

[
Ain B

0 I

][
uin

uBC

]
=

[
bin

g

]
or equivalently

[
Ain 0

0 I

][
uin

uBC

]
=

[
bin −Bg

g

]
.

Therefore, we only need to invert the inner matrix Ain, yielding

uin = A−1
in (bin −Bg) .

Remark 5.22. In the example presented earlier, we had only one inner node, labelled as 0.
However, in general (for instance, in meshzoo), the nodes are not necessarily ordered with
all inner nodes first, followed by boundary nodes. In such cases, we must reorder the rows
and columns of the global matrix so that inner nodes appear first, after which the boundary
condition modification can be applied.

In most FEM packages, such as FEniCS [16], the numbering convention already labels
the inner nodes first and the boundary nodes afterward.

Remark 5.23. In case of higher-order elements, say P2, the size of both the local and global
matrices increases. Here, the derivatives of the local basis functions are not constant, so one
needs to use numerical quadrature to evaluate the local integrals accurately.

Remark 5.24. For Neumann boundary conditions, the nodes corresponding to the Neumann
boundary are treated as inner nodes and are therefore not replaced with the identity matrix.
In general, the node labelling follows the order: inner nodes, Neumann boundary nodes, and
then Dirichlet boundary nodes.

Algorithm 4 presents the algorithm for applying the boundary conditions to a homoge-
neous Poisson problem defined on an unit square.
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Algorithm 4 Apply Homogeneous Dirichlet Boundary Conditions and Solve

Given: Global stiffness matrix A ∈ RN×N , load vector b ∈ RN , node coordinates
points = {(xi, yi)}Ni=1

Find: Solution vector u ∈ RN

Step 1: Identify boundary and interior nodes
Define boundary nodes as those lying on the unit square boundary:

boundary = { i | xi = 0 or xi = 1 or yi = 0 or yi = 1 }

Define interior nodes:
interior = { i | i /∈ boundary }

Step 2: Reduce the system to interior nodes
Extract reduced stiffness matrix and load vector:

Ain = A(interior, interior), bin = b(interior)

Step 3: Solve the reduced system
Solve:

Ain uin = bin

Step 4: Construct the global solution
Initialize global vector u = 0N

Assign interior values:
u(interior) = uin

Boundary nodes remain zero due to homogeneous Dirichlet conditions.

return u

5.3.4 Computation of Error

The last thing we want to discuss from an implementation point of view is the computation
of error. The same ideas used in the local assembly can be applied here. We will present the
computation for the error in the L2-norm, although these ideas can easily be extended to other
norms such as the L2-norm of the gradient.
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Let u be the analytical (exact) solution of the PDE and uh be the FEM solution. Then

∥u− uh∥2L2(Ω) =

∫
Ω

|u(x)− uh(x)|2 dx

=
∑
K∈Th

∫
K

|u(x)− uh(x)|2 dx

=
∑
K∈Th

∥u− uh∥2L2(K).

Hence, we need to compute the error on each element K. Using the mapping from the reference
element, we obtain

∥u− uh∥2L2(K) =

∫
K

|u(x)− uh(x)|2 dx

=

∫
K̂

∣∣∣∣∣û(x̂)−
NK−1∑
i=1

ui φ̂i(x̂)

∣∣∣∣∣
2

det(BK) dx̂,

where NK is the number of local nodes, û = u◦FK is the pullback of u to the reference element,
and φ̂i are the local basis functions on K̂.

The above integral can be evaluated numerically using a suitable Gaussian quadrature
rule on the reference element. This yields an accurate estimate of the L2 error for the FEM
solution.
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