Computation of Forces Arising from the Linear Poisson-Boltzmann Method in the Domain Decomposition Paradigm

Abhinav Jha

Applied and Computational Mathematics, RWTH Aachen University

92nd Annual Meeting of the International Association of Applied Mathematics and Mechanics 16th August 2022

Joint work with M.Nottoli (Università di Pisa, Pisa), C. Quan (SUS Tech, China),

and B. Stamm (Universität Stuttgart, Stuttgart)

Abhinav Jha

- **1** Solvation Models
- 2 ddLPB Method
- **3** Computation of Forces
- 4 Numerical Studies
- **5** Conclusions and Outlook

Solvation Models

Solvation Models ddLPB Method Computation of Forces Numerical Studies Conclusions and Outlook

- Ionic Solvation Models¹
 - Explicit Solvation Models
 - Adopts molecular representation of both solute and solvent
 - Accurate results
 - Computationally expensive

¹Zhang et. al.: JCTC, 13, 1034-1043, 2017

²Tomasci, Persico: CR 94, 2027-2094, 1994

³Honig, Nicholls: Sci. 268, 1144-1149, 1995

Abhinav Jha

Solvation Models

Solvation Models ddLPB Method Computation of Forces Numerical Studies Conclusions and Outlook

- Ionic Solvation Models¹
 - Explicit Solvation Models
 - Adopts molecular representation of both solute and solvent
 - Accurate results
 - Computationally expensive
 - Implicit Solvation Models ^{2,3}
 - Microscopic treatment of solute
 - Macroscopic treatment of solvent using physical properties
 - Less computational cost

¹Zhang et. al.: JCTC, 13, 1034-1043, 2017

²Tomasci, Persico: CR 94, 2027-2094, 1994

³Honig, Nicholls: Sci. 268, 1144-1149, 1995

Abhinav Jha

Solvation Models ddLPB Method Computation of Forces Numerical Studies Conclusions and Outlook

Figure 1: Formaldehyde molecule

Solvation Models ddLPB Method Computation of Forces Numerical Studies Conclusions and Outlook

• Linear Poisson-Boltzman (LPB) equation

 $-\nabla \cdot [\varepsilon(\mathbf{x})\nabla \psi(\mathbf{x})] + \bar{\kappa}(\mathbf{x})^2 \psi(\mathbf{x}) = 4\pi \rho_\mathsf{M}(\mathbf{x}) \quad \text{in } \mathbb{R}^3$

 $\circ \psi(\mathbf{x})$ – Electrostatic potential

• Linear Poisson-Boltzman (LPB) equation

$$-\nabla \cdot [\varepsilon(\mathbf{x})\nabla\psi(\mathbf{x})] + \bar{\kappa}(\mathbf{x})^2\psi(\mathbf{x}) = 4\pi\rho_{\mathsf{M}}(\mathbf{x}) \quad \text{in } \mathbb{R}^3$$

• $\psi(\mathbf{x})$ – Electrostatic potential • $\varepsilon(\mathbf{x})$ – Space-dependent dielectric permittivity

$$\varepsilon(\mathbf{x}) = \begin{cases} \varepsilon_1 & \text{in } \Omega, \\ \varepsilon_2 & \text{in } \Omega^{\mathsf{C}} := \mathbb{R}^3 \setminus \overline{\Omega} \end{cases}$$

 $\circ \Omega$ – Solute Cavity

• $\bar{\kappa}(\mathbf{x})$ – Modified Debye-Hückel parameter

$$\bar{\kappa}(\mathbf{X}) = \begin{cases} 0 & \text{in } \Omega, \\ \sqrt{\varepsilon_2} \kappa & \text{in } \Omega^{\mathsf{C}} \end{cases}$$

κ– Debye-Hückel screening constant

 $\circ \bar{\kappa}(\mathbf{x})$ – Modified Debye-Hückel parameter

$$\bar{\kappa}(\mathbf{X}) = \begin{cases} 0 & \text{in } \Omega, \\ \sqrt{\varepsilon_2} \kappa & \text{in } \Omega^{\mathsf{C}} \end{cases}$$

• κ - Debye-Hückel screening constant • $\rho_{M}(x)$ - Solute charge distribution

$$\rho_{\mathsf{M}}(\mathsf{x}) = \sum_{i=1}^{\mathsf{M}} q_i \delta(\mathsf{x} - \mathsf{x}_i)$$

M – Number of solute atoms
q_i – Partial charge on the ith atom

Solvation Models ddLPB Method Computation of Forces Numerical Studies Conclusions and Outlook

• Boundary Element Method (BEM) ¹

¹Yoon, Lehnoff: JCC 11, 1080-1086, 1990 ²Madura et.al.: CPC 91, 57-95, 1995 ³Chen, Holst, Xu: SINUM 45, 2295-2320, 2007 ⁴Cancés, Maday, Stamm: JCP 139, 054111, 2013 ⁵Lipparini et.al.: JCP 141, 184108, 2014 ⁶Quan, Stamm, Maday: SISC 41, B320-B350, 2019 ⁷Lebedev, Laikov: DM 59, 477-481, 1999

Abhinav Jha

Solvation Models ddLPB Method Computation of Forces Numerical Studies Conclusions and Outlook

- Boundary Element Method (BEM) ¹
- Finite Difference Method (FDM)²

¹Yoon, Lehnoff: JCC 11, 1080-1086, 1990 ²Madura et.al.: CPC 91, 57-95, 1995 ³Chen, Holst, Xu: SINUM 45, 2295-2320, 2007 ⁴Cancés, Maday, Stamm: JCP 139, 054111, 2013 ⁵Lipparini et.al.: JCP 141, 184108, 2014 ⁶Quan, Stamm, Maday: SISC 41, B320-B350, 2019 ⁷Lebedev, Laikov: DM 59, 477-481, 1999

Abhinav Jha

Solvation Models ddLPB Method Computation of Forces Numerical Studies Conclusions and Outlook

- Boundary Element Method (BEM)¹
- Finite Difference Method (FDM)²
- Finite Element Method (FEM)³

¹Yoon, Lehnoff: JCC 11, 1080-1086, 1990 ²Madura et.al.: CPC 91, 57-95, 1995 ³Chen, Holst, Xu: SINUM 45, 2295-2320, 2007 ⁴Cancés, Maday, Stamm: JCP 139, 054111, 2013 ⁵Lipparini et.al.: JCP 141, 184108, 2014 ⁶Quan, Stamm, Maday: SISC 41, B320-B350, 2019 ⁷Lebedev, Laikov: DM 59, 477-481, 1999

Abhinav Jha

Solvation Models ddLPB Method Computation of Forces Numerical Studies Conclusions and Outlook

- Boundary Element Method (BEM)¹
- Finite Difference Method (FDM)²
- Finite Element Method (FEM)³
- Domain Decomposition Methods ^{4,5,6}

¹Yoon, Lehnoff: JCC 11, 1080-1086, 1990 ²Madura et.al.: CPC 91, 57-95, 1995 ³Chen, Holst, Xu: SINUM 45, 2295-2320, 2007 ⁴Cancés, Maday, Stamm: JCP 139, 054111, 2013 ⁵Lipparini et.al.: JCP 141, 184108, 2014 ⁶Quan, Stamm, Maday: SISC 41, B320-B350, 2019 ⁷Lebedev, Laikov: DM 59, 477-481, 1999

Abhinav Jha

Solvation Models ddLPB Method Computation of Forces Numerical Studies Conclusions and Outlook

- Boundary Element Method (BEM)¹
- Finite Difference Method (FDM)²
- Finite Element Method (FEM)³
- Domain Decomposition Methods ^{4,5,6}
 - Schwarz decomposition method
 - Does not rely on mesh but quadrature points⁷
 - Computation of forces becomes natural as spheres are centered at nucleus position

¹ Yoon, Lehnoff: JCC 11, 1080-1086, 1990 ² Madura et.al.: CPC 91, 57-95, 1995 ³ Chen, Holst, Xu: SINUM 45, 2295-2320, 2007 ⁴ Cancés, Maday, Stamm: JCP 139, 054111, 2013 ⁵ Lipparini et.al.: JCP 141, 184108, 2014 ⁶ Quan, Stamm, Maday: SISC 41, B320-B350, 2019 ⁷ Lebedev, Laikov: DM 59, 477-481, 1999

Abhinav Jha

Solvation Models ddLPB Method Computation of Forces Numerical Studies Conclusions and Outlook

• The LPB equation can be written in two equations

$$\begin{split} -\Delta\psi(\mathbf{x}) &= \frac{4\pi}{\varepsilon_1}\rho_{\mathsf{M}}(\mathbf{x}) \qquad \text{in }\Omega,\\ -\Delta\psi(\mathbf{x}) + \kappa^2\psi(\mathbf{x}) &= 0 \qquad \text{in }\Omega^{\mathsf{C}}, \end{split}$$

with

$$\label{eq:phi} \begin{split} \llbracket \psi(\mathbf{x}) \rrbracket &= 0 \qquad \text{on } \Gamma, \\ \llbracket \partial_{\mathbf{n}} \psi(\mathbf{x}) \rrbracket &= 0 \qquad \text{on } \Gamma \end{split}$$

Solvation Models ddLPB Method Computation of Forces Numerical Studies Conclusions and Outlook

• Using potential theory the final equations are

$$\begin{split} -\Delta \psi_{\mathbf{r}}(\mathbf{x}) &= 0 \quad \text{in } \Omega, \\ -\Delta \psi_{\mathbf{e}}(\mathbf{x}) + \kappa^2 \psi_{\mathbf{e}}(\mathbf{x}) &= 0 \quad \text{in } \Omega, \end{split}$$

with

$$\begin{split} \psi_0 + \psi_{\mathbf{r}} &= \psi_{\mathbf{e}} & \text{on } \Gamma, \\ \sigma_{\mathbf{e}} &= \partial_{\mathbf{n}} \psi_{\mathbf{e}} - \frac{\varepsilon_1}{\varepsilon_2} \partial_{\mathbf{n}} (\psi_0 + \psi_{\mathbf{r}}) & \text{on } \Gamma^{\mathbf{1}} \end{split}$$

¹Sauter, Schwab, Springer, Berlin-2011, Thm. 3.3.1

Solvation Models ddLPB Method Computation of Forces Numerical Studies Conclusions and Outlook

• Using potential theory the final equations are

$$\begin{split} -\Delta \psi_{\mathbf{r}}(\mathbf{x}) &= 0 \quad \text{in } \Omega, \\ -\Delta \psi_{\mathbf{e}}(\mathbf{x}) + \kappa^2 \psi_{\mathbf{e}}(\mathbf{x}) &= 0 \quad \text{in } \Omega, \end{split}$$

with

$$\begin{split} \psi_0 + \psi_{\mathbf{r}} &= \psi_{\mathbf{e}} & \text{on } \Gamma, \\ \sigma_{\mathbf{e}} &= \partial_{\mathbf{n}} \psi_{\mathbf{e}} - \frac{\varepsilon_1}{\varepsilon_2} \partial_{\mathbf{n}} (\psi_0 + \psi_{\mathbf{r}}) & \text{on } \Gamma^1 \end{split}$$

where

 $∘ ψ_r -$ Reaction potential in Ω $∘ ψ_0 -$ Potential generated by $ρ_M$ satisfying,

$$-\Delta\psi_0 = \frac{4\pi}{\varepsilon_1}\rho_{\mathsf{M}}$$

¹Sauter, Schwab, Springer, Berlin-2011, Thm. 3.3.1

Solvation Models ddLPB Method Computation of Forces Numerical Studies Conclusions and Outlook

ψ_e - Extended potential from Ω^C to Ω
σ_e - Charge density generating ψ_e satisfying

$$\mathbf{S}_{\kappa}\boldsymbol{\sigma}_{\mathbf{e}}(\mathbf{x}) := \int_{\Gamma} \frac{\exp\left(-\kappa |\mathbf{x} - \mathbf{y}|\right)\boldsymbol{\sigma}_{\mathbf{e}}(\mathbf{y})}{4\pi |\mathbf{x} - \mathbf{y}|} = \psi_{\mathbf{e}} \quad \forall \ \mathbf{x} \in \Gamma$$

• S_{κ} – Invertible single-layer potential operator ¹

$$\mathbf{S}_{\kappa}: \mathbf{H}^{-1/2}(\Gamma) \to \mathbf{H}^{1/2}(\Gamma)$$

¹Sauter, Schwab, Springer, Berlin-2011, 101-181

Solvation Models ddLPB Method Computation of Forces Numerical Studies Conclusions and Outlook

Solvation Models	ddLPB Method	Computation of Forces	Numerical Studies	Conclusions and Outlook
------------------	--------------	-----------------------	-------------------	--------------------------------

Solvation Models	ddLPB Method	Computation of Forces	Numerical Studies	Conclusions and Outlook
------------------	--------------	-----------------------	-------------------	--------------------------------

Solvation Models ddLPB Method	Computation of Forces	Numerical Studies	Conclusions and Outlook
-------------------------------	-----------------------	-------------------	-------------------------

Global strategy

Solvation Models ddLPB Method Computation of Forces Numerical Studies Conclusions and Outlook

Solvation Models ddLPB Method Computation of Forces Numerical Studies Conclusions and Outlook

• Energy for LPB equations¹

$$E_{\rm s} = \frac{1}{2} \langle \psi_{\rm r}, \rho_{\rm M} \rangle = \frac{1}{2} \sum_{j=1}^{\rm M} \langle X, Q \rangle_j,$$

where,

$$[\mathsf{Q}]_{j\ell} = \begin{cases} \mathsf{q}_j \delta_{\ell 0}, & \text{if } 1 \leq j \leq \mathsf{M}, \\ 0 & \text{if } \mathsf{M} < j \leq 2\mathsf{M}. \end{cases}$$

and

$$\langle \mathsf{X}, \mathsf{Q} \rangle_j = \sum_{\ell} [\mathsf{X}]_{j\ell} [\mathsf{Q}]_{j\ell} \,.$$

¹Fogolari, Brigo, Molinari: JMR 15, 2002

Solvation Models ddLPB Method Computation of Forces Numerical Studies Conclusions and Outlook

• Force with respect to λ

$$F_{\lambda} = \nabla^{\lambda} (E_{s}) = \frac{1}{2} \left(\left\langle \nabla^{\lambda} X, Q \right\rangle + \left\langle X, \nabla^{\lambda} Q \right\rangle \right) = \frac{1}{2} \left\langle \nabla^{\lambda} X, Q \right\rangle$$

Solvation Models ddLPB Method Computation of Forces Numerical Studies Conclusions and Outlook

• Force with respect to λ

$$F_{\lambda} = \nabla^{\lambda} (E_{s}) = \frac{1}{2} \left(\left\langle \nabla^{\lambda} X, Q \right\rangle + \left\langle X, \nabla^{\lambda} Q \right\rangle \right) = \frac{1}{2} \left\langle \nabla^{\lambda} X, Q \right\rangle$$

• Let LX = g be the ddLPB system

$$\begin{aligned} \nabla^{\lambda} \mathbf{L} X + \mathbf{L} \nabla^{\lambda} X &= \nabla^{\lambda} g \\ \nabla^{\lambda} X &= \mathbf{L}^{-1} \left(\nabla^{\lambda} g - \nabla^{\lambda} \mathbf{L} X \right). \end{aligned}$$

Solvation Models ddLPB Method Computation of Forces Numerical Studies Conclusions and Outlook

• Force with respect to λ

$$F_{\lambda} = \nabla^{\lambda} (E_{s}) = \frac{1}{2} \left(\left\langle \nabla^{\lambda} X, Q \right\rangle + \left\langle X, \nabla^{\lambda} Q \right\rangle \right) = \frac{1}{2} \left\langle \nabla^{\lambda} X, Q \right\rangle$$

• Let LX = g be the ddLPB system

$$\begin{aligned} \nabla^{\lambda} \mathbf{L} X + \mathbf{L} \nabla^{\lambda} X &= \nabla^{\lambda} g \\ \nabla^{\lambda} X &= \mathbf{L}^{-1} \left(\nabla^{\lambda} g - \nabla^{\lambda} \mathbf{L} X \right). \end{aligned}$$

• Substituting $\nabla^{\lambda} X$

$$F_{\lambda} = \frac{1}{2} \left\langle \mathsf{L}^{-1} \left(\nabla^{\lambda} g - \nabla^{\lambda} \mathsf{L} X \right), \mathsf{Q} \right\rangle$$
$$= \frac{1}{2} \left\langle \left(\nabla^{\lambda} g - \nabla^{\lambda} \mathsf{L} X \right), \left(\mathsf{L}^{-1} \right)^{*} \mathsf{Q} \right\rangle$$
$$= \frac{1}{2} \left\langle \left(\nabla^{\lambda} g - \nabla^{\lambda} \mathsf{L} X \right), X_{\text{adj}} \right\rangle$$

Solvation Models ddLPB Method Computation of Forces Numerical Studies Conclusions and Outlook

• Linear System

$$LX = g$$
,

Solvation Models ddLPB Method Computation of Forces Numerical Studies Conclusions and Outlook

• Linear System

LX = g,

where

$$\mathbf{L} = \begin{bmatrix} \mathbf{A} & 0 \\ 0 & \mathbf{B} \end{bmatrix} + \begin{bmatrix} \mathbf{C}_1 & \mathbf{C}_2 \\ \mathbf{C}_1 & \mathbf{C}_2 \end{bmatrix}, \quad X = \begin{bmatrix} X_r \\ X_e \end{bmatrix}, \quad \text{and} \quad g = \begin{bmatrix} \mathbf{G}_0 + \mathbf{F}_0 \\ \mathbf{F}_0 \end{bmatrix}$$

- \mathbf{G}_0- Associated with ψ_0
- \mathbf{F}_0 Associated with $\partial_{\mathbf{n}}\psi_0$
- C_1 Associated with $\partial_n \psi_r$
- C_2 Associated with $\partial_n \psi_e$

Solvation Models ddLPB Method Computation of Forces Numerical Studies Conclusions and Outlook

• Linear System

LX = g,

where

$$\mathbf{L} = \begin{bmatrix} \mathbf{A} & 0 \\ 0 & \mathbf{B} \end{bmatrix} + \begin{bmatrix} \mathbf{C}_1 & \mathbf{C}_2 \\ \mathbf{C}_1 & \mathbf{C}_2 \end{bmatrix}, \quad \mathbf{X} = \begin{bmatrix} \mathbf{X}_r \\ \mathbf{X}_e \end{bmatrix}, \quad \text{and} \quad \mathbf{g} = \begin{bmatrix} \mathbf{G}_0 + \mathbf{F}_0 \\ \mathbf{F}_0 \end{bmatrix}$$

- \mathbf{G}_0- Associated with ψ_0
- \mathbf{F}_0 Associated with $\partial_{\mathbf{n}}\psi_0$
- C_1 Associated with $\partial_n \psi_r$
- C_2 Associated with $\partial_n \psi_e$
- Using the global strategy

$$\begin{bmatrix} \mathbf{A} & 0 \\ 0 & \mathbf{B} \end{bmatrix} \begin{bmatrix} X_r^k \\ X_e^k \end{bmatrix} = -\begin{bmatrix} \mathbf{C}_1 & \mathbf{C}_2 \\ \mathbf{C}_1 & \mathbf{C}_2 \end{bmatrix} \begin{bmatrix} X_r^{k-1} \\ X_e^{k-1} \end{bmatrix} + \begin{bmatrix} \mathbf{G}_0 + \mathbf{F}_0 \\ \mathbf{F}_0 \end{bmatrix}$$

where

• *k*- Iteration

Solvation Models ddLPB Method Computation of Forces Numerical Studies Conclusions and Outlook

• Linear System

LX = g,

where

$$\mathbf{L} = \begin{bmatrix} \mathbf{A} & 0 \\ 0 & \mathbf{B} \end{bmatrix} + \begin{bmatrix} \mathbf{C}_1 & \mathbf{C}_2 \\ \mathbf{C}_1 & \mathbf{C}_2 \end{bmatrix}, \quad \mathbf{X} = \begin{bmatrix} \mathbf{X}_r \\ \mathbf{X}_e \end{bmatrix}, \quad \text{and} \quad \mathbf{g} = \begin{bmatrix} \mathbf{G}_0 + \mathbf{F}_0 \\ \mathbf{F}_0 \end{bmatrix}$$

- \mathbf{G}_0- Associated with ψ_0
- \mathbf{F}_0 Associated with $\partial_{\mathbf{n}}\psi_0$
- C_1 Associated with $\partial_n \psi_r$
- C_2 Associated with $\partial_n \psi_e$
- Using the global strategy

$$\begin{bmatrix} \mathbf{A} & 0 \\ 0 & \mathbf{B} \end{bmatrix} \begin{bmatrix} X_r^k \\ X_e^k \end{bmatrix} = -\begin{bmatrix} \mathbf{C}_1 & \mathbf{C}_2 \\ \mathbf{C}_1 & \mathbf{C}_2 \end{bmatrix} \begin{bmatrix} X_r^{k-1} \\ X_e^{k-1} \end{bmatrix} + \begin{bmatrix} \mathbf{G}_0 + \mathbf{F}_0 \\ \mathbf{F}_0 \end{bmatrix}$$

where

- *k* Iteration
- A, B are sparse
- C₁, C₂ are not sparse

Abhinav Jha

Solvation Models ddLPB Method Computation of Forces Numerical Studies Conclusions and Outlook

• Comparison of Results

- Comparison of Results
 - Adaptive Poisson-Boltzmann Solver¹
 - Energy
 - Memory

- Comparison of Results
 - Adaptive Poisson-Boltzmann Solver¹
 - Energy
 - Memory
 - Analytical Forces vs Finite Difference

- Comparison of Results
 - Adaptive Poisson-Boltzmann Solver¹
 - Energy
 - Memory
 - Analytical Forces vs Finite Difference

$$\mathsf{D}_h[\mathsf{E}_s](\lambda) = rac{\mathsf{E}_s(\lambda+h) - \mathsf{E}_s(\lambda)}{h}$$

- Comparison of Results
 - Adaptive Poisson-Boltzmann Solver¹
 - Energy
 - Memory
 - Analytical Forces vs Finite Difference

$$\mathsf{D}_h[\mathsf{E}_s](\lambda) = rac{\mathsf{E}_s(\lambda+h) - \mathsf{E}_s(\lambda)}{h}$$

 $- \ell^{\infty}$ error $- \ell^2$ error

- Comparison of Results
 - Adaptive Poisson-Boltzmann Solver¹
 - Energy
 - Memory
 - Analytical Forces vs Finite Difference

$$\mathsf{D}_h[\mathsf{E}_s](\lambda) = rac{\mathsf{E}_s(\lambda+h) - \mathsf{E}_s(\lambda)}{h}$$

- $-\ell^{\infty}$ error
- $\ell^2 \operatorname{error}$

$$\mathsf{Err}_{\mathbf{j},\alpha}(\mathbf{h}) = \mathsf{D}_{\mathbf{h}}[\mathsf{E}_{s}](\mathbf{x}_{\mathbf{j},\alpha}) - \frac{\partial \mathsf{E}_{s}}{\partial \mathbf{x}_{\mathbf{j},\alpha}},$$

with

$$\mathbf{x}_{j} = (x_{j,1}, x_{j,2}, x_{j,3})^{\mathsf{T}}$$

¹Jurrus et. al. : Protein Sci. 27 (1), 112-128, 2018

Abhinav Jha

Solvation Models ddLPB Method Computation of Forces Numerical Studies Conclusions and Outlook

Constants in the Model

• $\epsilon_1 = 1, \epsilon_2 = 78.54$ • $\kappa = 0.104 \text{ Å}^{-1}$

¹ddX: https://github.com/ACoM-Computational-Mathematics/ddX

²Berman et. al. : NAR 28, 235-242, 2000

Solvation Models ddLPB Method Computation of Forces Numerical Studies Conclusions and Outlook

- Constants in the Model
 - $\varepsilon_1 = 1, \varepsilon_2 = 78.54$ • $\kappa = 0.104 \text{ Å}^{-1}$
- Stopping Criteria¹
 - GMRES Tol= 10^{-8}
 - Tol= 10^{-10}

¹ddX: https://github.com/ACoM-Computational-Mathematics/ddX

²Berman et. al. : NAR 28, 235-242, 2000

Solvation Models ddLPB Method Computation of Forces Numerical Studies Conclusions and Outlook

- Constants in the Model
 - $\varepsilon_1 = 1, \varepsilon_2 = 78.54$ • $\kappa = 0.104 \text{ Å}^{-1}$
- Stopping Criteria¹
 - GMRES Tol= 10^{-8}
 - $Tol = 10^{-10}$
- Test Structure²

PDB Code	Μ	Name
1ay3	25	Nodularin
1etn	180	Enterotoxin
1qjt	9046	EH1 Domain

¹ddX: https://github.com/ACoM-Computational-Mathematics/ddX

²Berman et. al. : NAR 28, 235-242, 2000

Abhinav Jha

Solvation Models ddLPB Method	Computation of Forces	Numerical Studies	Conclusions and Outlook
-------------------------------	-----------------------	-------------------	--------------------------------

• Energy

Solvation Models ddLPB Method Computation of Forces Numerical Studies Conclusions and Outlook

Memory

PDB	ddLPB				APBS				
Code									
	ℓ _{max}	Energy	Rel.	Mem.	Iter.	h (Å)	Energy	Rel.	Mem.
		(kJ/mol)	En.	(GB)			(kJ/mol)	En.	(GB)
	2	-126.5891	0.0323	0.0347	5	0.4353	-134.7127	0.0302	0.0215
	3	-128.4347	0.0182	0.0463	6	0.3513	-134.0656	0.0253	0.0218
	4	-129.1554	0.0127	0.0416	6	0.2213	-132.6796	0.0147	0.0638
	5	-129.6607	0.0088	0.0473	6	0.1697	-132.3780	0.0124	0.1244
1013	6	-129.9653	0.0065	0.0569	6	0.1333	-131.9791	0.0093	0.2448
Tay5	7	-130.1668	0.0050	0.0752	6	0.0900	-131.5849	0.0063	0.7906
(25)	8	-130.3308	0.0037	0.0922	6				
	9	-130.4356	0.0029	0.1249	6				
	10	-130.5462	0.0021	0.1525	6				
	12	-130.6886	0.0010	0.2873	6				
	2	-18411.4422	0.0244	1.2203	6	0.5690	-19075.6126	0.0122	2.9358
	3	-18603.4737	0.0142	3.1045	8	0.4840	-19041.8281	0.0104	4.7910
	4	-18701.0889	0.0090	6.9332	9	0.2900	-18962.9862	0.0062	24.8033
	5	-18757.4013	0.0060	13.7357	10				
1qjt (9046)	6	-18793.3707	0.0041	24.7674	10				
	7	-18819.8066	0.0027	41.5118	11				
	8	-18839.1510	0.0017	65.6922	11				
	9	-18853.5883	0.0009	99.2852	11				
	10	-18864.8898	0.0003	144.5051	11				
	12	-18880.1518	0.0005	279.6300	11				

Abhinav Jha

• Analytical Forces vs Finite Difference

Conclusions and Outlook

Solvation Models ddLPB Method Computation of Forces Numerical Studies Conclusions and Outlook

Conclusions¹

• Derivation of analytical forces for the ddLPB numerical method using the adjoint method

Abhinav Jha

¹J.,Nottoli, Quan, Stamm: arXiv : 2203.00552 , 2022

²ddX: https://github.com/ACoM-Computational-Mathematics/ddX

³Mikhalev,Nottoli, Stamm: chemrxiv : 10.26434 , 2022

⁴Geng,Kransy: JCP, 247, 62-78, 2013

Conclusions¹

- Derivation of analytical forces for the ddLPB numerical method using the adjoint method
- Implementation of the energy and forces validated by comparing results with APBS²

Abhinav Jha

¹ J.,Nottoli, Quan, Stamm: arXiv : 2203.00552 , 2022

²ddX: https://github.com/ACoM-Computational-Mathematics/ddX

³Mikhalev,Nottoli, Stamm: chemrxiv : 10.26434 , 2022

⁴Geng,Kransy: JCP, 247, 62-78, 2013

Conclusions¹

- Derivation of analytical forces for the ddLPB numerical method using the adjoint method
- Implementation of the energy and forces validated by comparing results with APBS²
- Current implementation scales quadratically with number of atoms

Abhinav Jha

¹J.,Nottoli, Quan, Stamm: arXiv : 2203.00552 , 2022

²ddX: https://github.com/ACoM-Computational-Mathematics/ddX

³Mikhalev,Nottoli, Stamm: chemrxiv : 10.26434 , 2022

⁴Geng,Kransy: JCP, 247, 62-78, 2013

Conclusions¹

- Derivation of analytical forces for the ddLPB numerical method using the adjoint method
- Implementation of the energy and forces validated by comparing results with APBS²
- Current implementation scales quadratically with number of atoms
- Outlook
 - FMM implementation for linear scaling³
 - Comparison with other software⁴

¹J.,Nottoli, Quan, Stamm: arXiv : 2203.00552 , 2022

²ddX: https://github.com/ACoM-Computational-Mathematics/ddX

³Mikhalev,Nottoli, Stamm: chemrxiv : 10.26434 , 2022

⁴Geng,Kransy: JCP, 247, 62-78, 2013