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• Poisson‐Boltzman (PB) Equation

−∇ ·
[
ε(x)∇ψ̃(x)

]
= 4π

(
ρsol(x) + ρions(x)

)
in R3

◦ ψ̃(x) : Electrostatic potential

◦ ε(x) : Space‐dependent dielectric permittivity
◦ ρsol(x) : Solute charge distribution

ρsol(x) =
M∑
i=1

qiδ(x− xi)

− M : Number of solute atoms
− qi : Total charge on the ith atom
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◦ ρions(x) : Ionic charge distribution

ρions(x) =
Nions∑
i=1

zieλ(x)c∞i exp
(
−zieψ̃(x)

KBT

)

◦ For 1 : 1 ionic solution1

ρions(x) = −2ceλ(x) sinh
(
eψ̃(x)
KBT

)

− λ(x) : Ion‐exclusion function

1Stein, Herbert, Head‐Gordon: JCP, 151(22), 2019
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• For 1 : 1 solution Poisson‐Boltzman (PB) Equation

−∇ ·
[
ε(x)∇ψ̃(x)

]
+ 8πecλ(x) sinh

(
eψ̃(x)
KBT

)
= 4πρsol(x) in R3

• Dimensionless Poisson‐Boltzman (PB) Equation

−∇ · [ε(x)∇ψ(x)] + κ2εsλ(x) sinh (ψ(x)) =
4π

β
ρsol(x) in R3

◦ ψ(x) : ψ̃(x)β
◦ κ : Debye Hückel Screening Constant
◦ β : e/KBT
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Figure 1: Solute probes and solute‐solvent boundary for a molecule
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• Dielectric Permittivity Function1

ε(x) =


1 x ∈ ΩSES,

1 + (εs − 1)ξ

(
fSAS−S(x) + rp
r0 + rp + a

)
x ∈ Lε,

εs else,

• Ion‐Exclusion Function

λ(x) =


0 x ∈ ΩSES−S,

ξ

(
fSAS−S(x) + rp
r0 + rp + a

)
x ∈ Lλ,

1 else,

1Quan, Stamm: JCP, 322, 760‐782, 2016
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Model Problem ddPB Method ddPB Derivation Numerical Studies Conclusions and Outlook

r1 r1 + a r1 + rp r1 + rp + a R1

1

εs
ε(
x)

Linearity in Different Regions

r1 r1 + a r1 + rp r1 + rp + a R1

0

1

λ
(x
)SES‐

cavity

ε :C ε :NC ε :NC ε :C ε :C
λ :C λ :C λ :NC λ :NC λ :C

L L NL NL NL

◦ R1: r1 + rp + a+ r0
◦ C: Constant, NC: Non‐Constant
◦ L: Linear, NL: Non‐Linear
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• The PB equation can be written in two equations

−∇ · [ε(x)∇ψ(x)] + κ2εsλ(x) sinh (ψ(x)) = 4π
β ρ

sol(x) in Ω0,

−∆ψ(x) + κ2ψ(x) = 0 in Ω∞,

with

[[ψ]] = 0,

[[∂nψ]] = 0 on Γ0 := ∂Ω0,
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• Using Potential Theory the final equations are
−∇ · [ε(x)∇ψr(x)] + κ2εsλ(x)F (ψr + ψ0) (ψr + ψ0) (x)

= ∇ · [(ε(x)− 1)∇ψ0(x)] in Ω0 [GSP]

−∆ψe(x) + κ2ψe(x) = 0 in Ω0 [HSP]

with
ψ0 + ψr = ψe on Γ,
ψe = Sκσe on Γ

where
◦ ψr : Reaction potential in Ω
◦ ψ0 : Potential generated by ρM satisfying,

−∆ψ0 =
4π

β
ρM
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◦ ψe : Extended potential from ΩC to Ω0

◦ F(Φ) =
sinh(Φ)

Φ
◦ σe : Charge density generating ψe satisfying

Sκσe(x) =
∫
Γ

exp (−κ|x− y|)σe(y)
4π|x− y|

= ψe ∀ x ∈ Γ

◦ Sκ : Invertible single‐layer potential operator 1

Sκ : H−1/2(Γ) → H1/2(Γ)

1Sauter, Schwab, Springer, Berlin‐2011, 101‐181
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GSP

HSP

[[ψ]] = 0

[[∂nψ]] = 0 ΩC

Ω0

Γ0

GSP on Ω0

ψr + ψ0 = g on Γ0

−∆ψe + κ2ψe = 0 in Ω0

ψe = g on Γ0

g : Sκ (∂nψe − ∂n (ψr + ψ0))
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• GSP equation in unit ball

−∇ ·
[

˜ε(x)∇u(x)
]
+ λ(x)F̃

(
u(x)

)
u(x) = f(x) in B1(0)

u(x) = ϕr(x) on ∂B1(0)

• Transformation to Homogeneous Problem

−∇ ·
[

˜ε(x)∇w(x)
]
+ λ(x)F̃

((
w+ û1

)
(x)
)
w(x) = f̃(x), in B1(0)

w(x) = 0 on ∂B1(0),

◦ w(x) = u(x)− û1(x)
◦ f̃(x) = f(x) +∇ · [ε̃(x)∇û1(x)]− λ(x)F̃

((
w+ û1

)
(x)
)
û1(x)

◦ û1(x) : Laplace solution satisfying the boundary condition
• Brj(xj) ⊂ Ωj

◦ ψr(x) is harmonic in Brj(xj)
◦ w(x) is harmonic in Bδ(0) where

δ =
rj

rj + r0 + rp + a
∈ (0, 1)
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u(x) = ϕr(x) on ∂B1(0)

• Transformation to Homogeneous Problem

−∇ ·
[

˜ε(x)∇w(x)
]
+ λ(x)F̃

((
w+ û1

)
(x)
)
w(x) = f̃(x), in B1(0)

w(x) = 0 on ∂B1(0),

◦ w(x) = u(x)− û1(x)
◦ f̃(x) = f(x) +∇ · [ε̃(x)∇û1(x)]− λ(x)F̃

((
w+ û1

)
(x)
)
û1(x)

◦ û1(x) : Laplace solution satisfying the boundary condition
• Brj(xj) ⊂ Ωj

◦ ψr(x) is harmonic in Brj(xj)
◦ w(x) is harmonic in Bδ(0) where

δ =
rj

rj + r0 + rp + a
∈ (0, 1)
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• Find w ∈ H1
0,δ(D) such that∫

D
ε̃(x)∇w(x)∇w̃(x) +

∫
D
λ(x)F̃ (w(x))w(x)w̃(x)

+

∫
∂Bδ(0)

(T w) w̃(x) =
∫
D
f̃(x)w̃(x) ∀ w̃ ∈ H1

0,δ(D),

◦ D = B1(0) \ Bδ(0)
◦ H1

0,δ(D) =
{
w ∈ H1(D) : w|∂B1(0) = 0

}
• Using Galerkin discretisation

w(r, θ, φ) =
N∑
i=0

ℓmax∑
ℓ=0

ℓ∑
m=−ℓ

[ϕr]
m
iℓ ϱi(r)Y

m
ℓ (θ, φ) ∀ δ ≤ r ≤ 1; 0 ≤ θ ≤ π; 0 ≤ φ ≤ 2π,

◦ ϱi : Legendre polynomial of order i
◦ N :Maximum degree of Legendre polynomial of order ϱi
◦ Ymℓ : Spherical Harmonic Basis
◦ ℓmax :Maximum degree of Ymℓ
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• System of Equation
AXr = F

where
◦ k(:= N

(
ℓ2 +m+ 1

)
+ i ∈ {1, 2, . . . ,N (ℓmax + 1)2}), k′ entry

[A]k,k′ =

∫
D
ε̃(x)∇ (ϱiYmℓ ) · ∇

(
ϱjYm

′
ℓ′

)
+

∫
D
λ(x)F̃

(
w̃(x)

)
ϱiYmℓ ϱjYm

′
ℓ′

+
ℓ

δ

∫
∂Bδ(0)

ϱiYmℓ ϱjYm
′

ℓ′ ,

◦
[F]k =

∫
D
f̃ϱjYm

′
ℓ′ ∀ k ∈ {1, . . . ,N(ℓmax + 1)2}.

Abhinav Jha
ddPB method, 2nd June 2023

13



3 Single Domain Solvers
Model Problem ddPB Method ddPB Derivation Numerical Studies Conclusions and Outlook

• HSP equation in unit ball 1

−∆ue + κ2u2e = 0 in B1(0),

ue = ϕe on S2

• ue can be numerically approximated by ũe

ũe(r, θ, φ) =
ℓmax∑
ℓ=0

ℓ∑
m=−ℓ

[
ϕ̃e

]m
ℓ

iℓ(r)
iℓ(1)

Ymℓ (θ, φ)

for 0 ≤ r ≤ 1, 0 ≤ θ ≤ π, 0 ≤ φ < 2π

◦
[
ϕ̃e

]m
ℓ
: Numerical approximation of [ϕe]mℓ

[
ϕ̃e

]m
ℓ
=

Nleb∑
n=1

ωlebn ϕe(sn)Ymℓ (sn)

1Quan, Stamm, Maday: SISC, 41(2), B320‐B350, 2019
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• Numerical Integration12

∫
D
h(x)dx =

∫ 1

δ
r2
∫
S2
h(r, s)dsdr

≈ 1− δ

2

Nlgl∑
m=1

Nleb∑
n=1

ωlglm ω
leb
n

(
1− δ

2
(xm + 1) + δ

)2

×h
(
1− δ

2
(xm + 1) + δ, sn

)
.

1Haxton: J.Phy.B, 40, 4443, 2007
2Parter: JSC, 14, 347‐355, 1999
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• Energy Computation1

Es =
1

2

∫
R

(
ρsol(x)ψr(x)− ρions(x)ψr(x)− 2∆Π

)
dx

◦ ∆Π : Osmotic Pressure

• Stopping Criteria
◦ Global Iterative Process

|Esk − Esk−1|/|Esk| ≤ tol

◦ DD loop
∥Xrk − Xrk−1∥ℓ2

∥Xrk∥ℓ2
≤ 10× tol

◦ Matrix loop
∥Xr,ik − Xr,ik−1∥ℓ2

∥Xr,ik∥ℓ2
≤ 100× tol

1Stein, Herbert, Head‐Gordon: JCP, 151(22), 2019
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4 Numerical Studies
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• Constants in the model

◦ εs: 78.54
◦ κ: 0.104 Å−1

◦ T: 298.15 K
◦ tol: 10−7

◦ Conversion to atomic units
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4 Numerical Studies
Model Problem ddPB Method ddPB Derivation Numerical Studies Conclusions and Outlook

• Discretisation Parameters: N = 20, Nlgl = 300

• Geometric Parameters: r1 = 2 Å, r0 = 3 Å, rp = 1.4 Å, a = 1.2 Å
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• Discretisation Parameters: N = 40, Nlgl = 400

• Geometric Parameters: r1 = 2 Å, r0 = 10 Å, rp = 1.4 Å, a = 1.2 Å
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• Discretisation Parameters: N = 20, Nlgl = 200

• Geometric Parameters: r1 = 2 Å, r0 = 10 Å, rp = 1.4 Å, a = 0 Å (left) ,
and a = 1.2 Å (right)
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• Var(ψ)=| sinh(ψ)/ψ − 1|
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• Discretisation Parameters: N = 20, Nlgl = 500

• Geometric Parameters: r1 = 2 Å, r0 = 50 Å, rp = 1.4 Å, a = 1.2 Å
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• Discretisation Parameters: N = 15, Nlgl = 50, ℓmax = 11,
Nleb = 1202

• Geometric Parameters: Hydrogen Fluoride Molecule, r0 = 30 Å,
rp = 1.4 Å, a = 1.2 Å
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• Conclusions
◦ Formulation of domain decomposition method for PB
equations

◦ Development of a non‐linear solver
◦ Inclusion of Steric effects
◦ Current implementation for small molecules

• Outlook
◦ Implementation to ddX library1
◦ Comprehensive numerical studies

Thank You!

1Herbst, J., Lipparini, Mikhalev, Notolli, Stamm, ddX: https://github.com/ddsolvation/ddX
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