Adaptive Grids for Algebraic Stabilizations of Convection-Diffusion-Reaction Equations

Abhinav Jha

Institute of Applied Analysis and Numerical Simulation Universität Stuttgart

SIAM Conference on Computational Science and Engineering (CSE23) 1st March 2023

Joint work with Volker John (WIAS, Berlin) and Petr Knobloch (Charles University, Prague)

Outline

1 Algebraic Stabilisation Schemes

2 A Posteriori Error Analysis 2.1 Residual Based Approach

3 Adaptive Grids 3.1 Implementation

4 Numerical Studies

5 Conclusions and Outlook

Algebraic Stabilisation Schemes A Posteriori Error Analysis Adaptive Grids Numerical Studies Conclusions and Outlook

• Steady-state convection-diffusion-reaction equation

$$-\varepsilon \Delta u + \mathbf{b} \cdot \nabla u + cu = f \quad \text{in } \Omega,$$

$$u = u_b \quad \text{on } \Gamma_D,$$

$$-\varepsilon \nabla u \cdot \mathbf{n} = g \quad \text{on } \Gamma_N$$

- Ω bounded polyhedral Lipschitz domain in \mathbb{R}^d , $d \in \{2, 3\}$
- n outward pointing unit normal
- Assume

$$\left(\mathsf{c}(\mathbf{x}) - \frac{1}{2} \nabla \cdot \mathbf{b}(\mathbf{x})\right) \ge \sigma_0 > 0$$

Interested in convection-dominated regime, ε ≪ ||b||_{L∞(Ω)}L
L - Characteristic length of the problem

- Ideal discretization
 - 1. Accurate and sharp layers

Algebraic Stabilisation Schemes A Posteriori Error Analysis Adaptive Grids Numerical Studies Conclusions and Outlook

- 1. Accurate and sharp layers
- 2. Physically consistent results (no spurious oscillations)

Algebraic Stabilisation Schemes A Posteriori Error Analysis Adaptive Grids Numerical Studies Conclusions and Outlook

- 1. Accurate and sharp layers
- 2. Physically consistent results (no spurious oscillations)
- 3. Efficient computation of the solutions

Algebraic Stabilisation Schemes A Posteriori Error Analysis Adaptive Grids Numerical Studies Conclusions and Outlook

- 1. Accurate and sharp layers
- 2. Physically consistent results (no spurious oscillations)
- 3. Efficient computation of the solutions
- Because of 2nd property: Algebraic stabilised schemes very well suited for applications

Algebraic Stabilisation Schemes A Posteriori Error Analysis Adaptive Grids Numerical Studies Conclusions and Outlook

- 1. Accurate and sharp layers
- 2. Physically consistent results (no spurious oscillations)
- 3. Efficient computation of the solutions
- Because of 2nd property: Algebraic stabilised schemes very well suited for applications
- Alternate approach: Adaptive grids

Algebraic Stabilisation Schemes A Posteriori Error Analysis Adaptive Grids Numerical Studies Conclusions and Outlook

- 1. Accurate and sharp layers
- 2. Physically consistent results (no spurious oscillations)
- 3. Efficient computation of the solutions
- Because of 2nd property: Algebraic stabilised schemes very well suited for applications
- Alternate approach: Adaptive grids
- Idea: Combine both the approaches

A Posteriori Analysis

Algebraic Stabilisation Schemes A Posteriori Error Analysis Adaptive Grids Numerical Studies Conclusions and Outlook

• Variational problem for AFC scheme¹ Find $u_h \in V_h$ such that

 $a_h(\mathbf{u}_h, \mathbf{v}_h) + d_h(\mathbf{u}_h; \mathbf{u}_h, \mathbf{v}_h) = \langle f, \mathbf{v}_h \rangle \ \forall \mathbf{v}_h \in \mathbf{V}_h$

 $\circ~V_h-$ finite element space with homogeneous Dirichlet boundary conditions $(V_h\subset V)$

¹Barrenechea, John, Knobloch: arXiv : 2204.07480, 2022

A Posteriori Analysis

Algebraic Stabilisation Schemes A Posteriori Error Analysis Adaptive Grids Numerical Studies Conclusions and Outlook

• Variational problem for AFC scheme¹ Find $u_h \in V_h$ such that

 $a_h(\mathbf{u}_h, \mathbf{v}_h) + d_h(\mathbf{u}_h; \mathbf{u}_h, \mathbf{v}_h) = \langle f, \mathbf{v}_h \rangle \quad \forall \mathbf{v}_h \in \mathbf{V}_h$

- $\circ~V_h-$ finite element space with homogeneous Dirichlet boundary conditions $(V_h\subset V)$
- stabilization

$$d_{\mathsf{h}}(\mathsf{w}; \mathsf{z}, \mathsf{v}) = \sum_{i,j=1}^{\mathsf{N}} (1 - \alpha_{ij}(\mathsf{w})) d_{ij}(\mathsf{z}_j - \mathsf{z}_i) \mathsf{v}_i \quad \forall \ \mathsf{w}, \mathsf{v}, \mathsf{z} \in \mathsf{V}_{\mathsf{h}}$$

¹Barrenechea, John, Knobloch: arXiv : 2204.07480, 2022

A Posteriori Analysis

Algebraic Stabilisation Schemes A Posteriori Error Analysis Adaptive Grids Numerical Studies Conclusions and Outlook

• Variational problem for AFC scheme¹ Find $u_h \in V_h$ such that

 $a_h(\mathbf{u}_h, \mathbf{v}_h) + d_h(\mathbf{u}_h; \mathbf{u}_h, \mathbf{v}_h) = \langle f, \mathbf{v}_h \rangle \quad \forall \mathbf{v}_h \in \mathbf{V}_h$

- $\circ~V_h-$ finite element space with homogeneous Dirichlet boundary conditions $(V_h\subset V)$
- stabilization

$$d_{\mathsf{h}}(\mathsf{w};\mathsf{z},\mathsf{v}) = \sum_{i,j=1}^{\mathsf{N}} (1 - \alpha_{ij}(\mathsf{w})) d_{ij}(\mathsf{z}_j - \mathsf{z}_i) \mathsf{v}_i \quad \forall \ \mathsf{w},\mathsf{v},\mathsf{z} \in \mathsf{V}_{\mathsf{h}}$$

Energy norm

$$\|u_h\|_a^2 = \varepsilon |u_h|_1^2 + \sigma \|u_h\|_0^2$$

¹Barrenechea, John, Knobloch: arXiv : 2204.07480, 2022

Residual Based Approach

Algebraic Stabilisation Schemes A Posteriori Error Analysis Adaptive Grids Numerical Studies Conclusions and Outlook

Theorem (Global a posteriori error estimate)

A global a posteriori error estimate for the energy norm is given by¹

 $\|\mathbf{u}-\mathbf{u}_{h}\|_{a}^{2} \leq \eta_{1}^{2}+\eta_{2}^{2}+\eta_{3}^{2},$

where

$$\eta_1^2 = \sum_{K \in \mathcal{T}_h} \min\left\{\frac{4C_l^2}{\sigma}, \frac{4C_l^2 h_K^2}{\varepsilon}\right\} \|R_K(u_h)\|_{L^2(K)}^2,$$

$$\eta_2^2 = \sum_{F \in \mathcal{F}_h} \min\left\{\frac{4C_F^2 h_F}{\varepsilon}, \frac{4C_F^2}{\sigma^{1/2} \varepsilon^{1/2}}\right\} \|R_F(u_h)\|_{L^2(F)}^2,$$

$$\eta_3^2 = \sum_{E \in \mathcal{E}_h} \min\left\{\frac{4\kappa_1 h_E^2}{\varepsilon}, \frac{4\kappa_2}{\sigma}\right\} (1 - \alpha_E)^2 |d_E|^2 h_E^{1-d} \|\nabla u_h \cdot \mathbf{t}_E\|_{L^2(E)}^2$$

¹J.: CAMWA, 97(1), 86–99, 2021

Abhinav Jha

Hanging Nodes

Algebraic Stabilisation Schemes A Posteriori Error Analysis Adaptive Grids Numerical Studies Conclusions and Outlook

• Standard strategy for solving

$\textbf{SOLVE} \rightarrow \textbf{ESTIMATE} \rightarrow \textbf{MARK} \rightarrow \textbf{REFINE}$

¹Xu, Zikatanov: MC, 68(228), 1429–1446, 1999

• Standard strategy for solving

$\textbf{SOLVE} \rightarrow \textbf{ESTIMATE} \rightarrow \textbf{MARK} \rightarrow \textbf{REFINE}$

• Hanging nodes

- Preserves angles after red-refinement
- Avoids prism and pyramids in 3D mesh refinement
- hp adaptive refinement
- Certain stabilized schemes rely on the property of triangulation ¹

¹Xu, Zikatanov: MC, 68(228), 1429–1446, 1999

Adaptive Grids

Algebraic Stabilisation Schemes A Posteriori Error Analysis Adaptive Grids Numerical Studies Conclusions and Outlook

Lemma

Let \mathcal{T} be a non-conforming triangulation of Ω , i.e., \mathcal{T} has hanging nodes. Then, for all $q \in H(\mathcal{T})$ there are coefficients a_{qp} with $p \in N_F(\mathcal{T}) \setminus H(\mathcal{T})$ such that all $v \in V_h$ can be represented as^{1,2}

$$\mathbf{v}(q) = \sum_{\mathbf{p} \in \mathbf{N}_{\mathbf{F}}(\mathcal{T}) \setminus \mathbf{H}(\mathcal{T})} a_{qp} \mathbf{v}(\mathbf{p})$$

¹Gräser : PhD Thesis, FU Berlin 2011

² J.: PhD Thesis, FU Berlin 2020

Abhinav Jha

Adaptive Grids

Algebraic Stabilisation Schemes A Posteriori Error Analysis Adaptive Grids Numerical Studies Conclusions and Outlook

Lemma

Let \mathcal{T} be a non-conforming triangulation of Ω , i.e., \mathcal{T} has hanging nodes. Then, for all $q \in H(\mathcal{T})$ there are coefficients a_{qp} with $p \in N_F(\mathcal{T}) \setminus H(\mathcal{T})$ such that all $v \in V_h$ can be represented as^{1,2}

$$\mathbf{v}(q) = \sum_{\mathbf{p} \in \mathbf{N}_{\mathbf{F}}(\mathcal{T}) \setminus \mathbf{H}(\mathcal{T})} a_{qp} \mathbf{v}(\mathbf{p})$$

Theorem

Let $\{\mathcal{T}_0, \cdots, \mathcal{T}_j\}$ be a grid hierarchy on Ω with \mathcal{T}_0 being conforming. Let us denote $\mathcal{T} = \mathcal{T}_j$, i.e., the final refinement level. Then a basis of V_h is given by ¹

$$\mathsf{B}(\mathcal{T}) := \left\{ \varphi_{p} = \varphi_{p}^{\mathsf{nc}} + \sum_{q \in \mathsf{H}(\mathcal{T})} a_{qp} \varphi_{q}^{\mathsf{nc}} : p \in \mathsf{N}_{\mathsf{F}}(\mathcal{T}) \setminus \mathsf{H}(\mathcal{T}) \right\}$$

¹Gräser : PhD Thesis, FU Berlin 2011

² J.: PhD Thesis, FU Berlin 2020

Abhinav Jha

- Satisfaction of DMP
 - DMP is satisfied if¹

 $\begin{array}{rcl} a_{ii} &>& 0,\\ a_{ij}+a_{ji} &\leq& 0, \end{array}$

where a_{ij} is in the stiffness matrix

¹Barrenechea, John, Knobloch: SINUM (54), 2427–2451, 2016

Implementation

• Consider the sample patch

• Initial assembly

(<i>a</i> ₀₀	a 01	a_{02}	a 03	a ₀₄		$\left(b_{0} \right)$
a ₁₀	a ₁₁	a_{12}	a ₁₃	a ₁₄		b ₁
a ₂₀	a_{21}	a_{22}	a_{23}	a_{24}	,	b_2
<i>a</i> ₃₀	a_{31}	a_{32}	a ₃₃	a_{34}		b ₃
a_{40}	a_{41}	a_{42}	a_{43}	a ₄₄)		b_4

• Initial assembly

$$\begin{pmatrix} a_{00} & a_{01} & a_{02} & a_{03} & a_{04} \\ a_{10} & a_{11} & a_{12} & a_{13} & a_{14} \\ a_{20} & a_{21} & a_{22} & a_{23} & a_{24} \\ a_{30} & a_{31} & a_{32} & a_{33} & a_{34} \\ a_{40} & a_{41} & a_{42} & a_{43} & a_{44} \end{pmatrix}, \quad \begin{pmatrix} b_0 \\ b_1 \\ b_2 \\ b_3 \\ b_4 \end{pmatrix}$$

• Conforming test space and continuity of the hanging node

$$\begin{pmatrix} 1 & -\frac{1}{2} & 0 & -\frac{1}{2} & 0 \\ a_{10} + \frac{a_{00}}{2} & a_{11} + \frac{a_{01}}{2} & a_{12} + \frac{a_{02}}{2} & a_{13} + \frac{a_{03}}{2} & a_{14} + \frac{a_{04}}{2} \\ a_{20} & a_{21} & a_{22} & a_{23} & a_{24} \\ a_{30} + \frac{a_{00}}{2} & a_{31} + \frac{a_{01}}{2} & a_{32} + \frac{a_{02}}{2} & a_{33} + \frac{a_{03}}{2} & a_{34} + \frac{a_{04}}{2} \\ a_{40} & a_{41} & a_{42} & a_{43} & a_{44} \end{pmatrix}, \quad \begin{pmatrix} 0 \\ b_1 + \frac{b_0}{2} \\ b_2 \\ b_3 + \frac{b_0}{2} \\ b_4 \end{pmatrix}$$

Implementation

• Conforming ansatz space

$$\begin{pmatrix} 1 & -\frac{1}{2} & 0 & -\frac{1}{2} & 0 \\ 0 & a_{11} + \frac{a_{01}}{2} + \frac{a_{10}}{2} + \frac{a_{00}}{4} & a_{12} + \frac{a_{02}}{2} & a_{13} + \frac{a_{03}}{2} + \frac{a_{10}}{2} + \frac{a_{00}}{4} & a_{14} + \frac{a_{04}}{2} \\ 0 & a_{21} + \frac{a_{20}}{2} & a_{22} & a_{23} + \frac{a_{20}}{2} & a_{24} \\ 0 & a_{31} + \frac{a_{01}}{2} + \frac{a_{30}}{2} + \frac{a_{00}}{4} & a_{32} + \frac{a_{02}}{2} & a_{33} + \frac{a_{03}}{2} + \frac{a_{30}}{2} + \frac{a_{00}}{4} & a_{34} + \frac{a_{04}}{2} \\ 0 & a_{41} + \frac{a_{40}}{2} & a_{42} & a_{43} + \frac{a_{40}}{2} & a_{44} \end{pmatrix}$$

Implementation

• Conforming ansatz space

$$\begin{pmatrix} 1 & -\frac{1}{2} & 0 & -\frac{1}{2} & 0 \\ 0 & a_{11} + \frac{a_{01}}{2} + \frac{a_{10}}{2} + \frac{a_{00}}{4} & a_{12} + \frac{a_{02}}{2} & a_{13} + \frac{a_{03}}{2} + \frac{a_{10}}{2} + \frac{a_{00}}{4} & a_{14} + \frac{a_{04}}{2} \\ 0 & a_{21} + \frac{a_{20}}{2} & a_{22} & a_{23} + \frac{a_{20}}{2} & a_{24} \\ 0 & a_{31} + \frac{a_{01}}{2} + \frac{a_{30}}{2} + \frac{a_{00}}{4} & a_{32} + \frac{a_{02}}{2} & a_{33} + \frac{a_{03}}{2} + \frac{a_{30}}{2} + \frac{a_{00}}{4} & a_{34} + \frac{a_{04}}{2} \\ 0 & a_{41} + \frac{a_{40}}{2} & a_{42} & a_{43} + \frac{a_{40}}{2} & a_{44} \end{pmatrix}$$

• Increases the matrix stencil by few elements

Algebraic Stabilisation Schemes A Posteriori Error Analysis Adaptive Grids Numerical Studies Conclusions and Outlook

- Algebraic stabilisation schemes
 - Algebraic Flux Correction (AFC) schemes
 - Kuzmin limiter¹
 - BJK limiter^{2,3}

⁴ John, Knobloch: arXiv: 2111.08697, 2021

Abhinav Jha

¹Kuzmin: in Proc. Int. Conf. Comput. Meth. for Coupled Problems in Science and Engineering, CIMNE, 2007

²Barrenechea, John, Knobloch: M3AS (27), 525-548, 2017

³Barrenechea, John, Knobloch: arXiv: 2204.07480, 2022

Algebraic Stabilisation Schemes A Posteriori Error Analysis Adaptive Grids Numerical Studies Conclusions and Outlook

- Algebraic stabilisation schemes
 - Algebraic Flux Correction (AFC) schemes
 - Kuzmin limiter¹
 - BJK limiter^{2,3}
 - Monotone Upwind-type Algebraically Stabilized (MUAS) method⁴
 - **Drops** symmetric condition on α_{ij}
 - AFC system is modified

$$(\mathbf{A} + \mathbf{D}) \mathbf{U} = \mathbf{F} + (\mathbf{D} - \mathbf{B}) \mathbf{U},$$

where

$$b_{ij} = \max\left\{\left(1 - \overline{\alpha_{ij}}(\mathsf{u})\right)a_{ij}, 0, \left(1 - \overline{\alpha_{ji}}(\mathsf{u})\right)a_{ji}\right\}$$

¹Kuzmin: in Proc. Int. Conf. Comput. Meth. for Coupled Problems in Science and Engineering, CIMNE, 2007

¹ John, Knobloch: arXiv: 2111.08697, 2021

Abhinav Jha

²Barrenechea, John, Knobloch: M3AS (27), 525-548, 2017

³Barrenechea, John, Knobloch: arXiv: 2204.07480, 2022

- Comparison of results:
 - Accuracy of solution
 - $\|\cdot\|_{L^2(\Omega)} \\ \|\nabla(\cdot)\|_{L^2(\Omega)}$

¹Augustin, Caiazzo, Fiebach, Fuhrmann, John, Linke, Umla : CMAME (200), 3395 - 3409, 2011

- Comparison of results:
 - Accuracy of solution
 - $\begin{array}{l} \|\cdot\|_{L^2(\Omega)} \\ \|\nabla(\cdot)\|_{L^2(\Omega)} \end{array}$
 - Efficiency of the scheme

¹Augustin, Caiazzo, Fiebach, Fuhrmann, John, Linke, Umla : CMAME (200), 3395 - 3409, 2011

- Comparison of results:
 - Accuracy of solution
 - $\begin{array}{l} & \|\cdot\|_{L^2(\Omega)} \\ & \|\nabla(\cdot)\|_{L^2(\Omega)} \end{array}$
 - Efficiency of the scheme
 - Global satisfaction of DMP

$$\operatorname{osc}_{\max}(u_h) := \max_{(x,y)\in\overline{\Omega}} u_h(x,y) - 1 - \min_{(x,y)\in\overline{\Omega}} u_h(x,y)$$

¹Augustin, Caiazzo, Fiebach, Fuhrmann, John, Linke, Umla : CMAME (200), 3395 - 3409, 2011

- Comparison of results:
 - Accuracy of solution
 - $\begin{array}{l} & \|\cdot\|_{L^2(\Omega)} \\ & \|\nabla(\cdot)\|_{L^2(\Omega)} \end{array}$
 - Efficiency of the scheme
 - Global satisfaction of DMP

$$\operatorname{osc}_{\max}(u_h) := \max_{(x,y)\in\overline{\Omega}} u_h(x,y) - 1 - \min_{(x,y)\in\overline{\Omega}} u_h(x,y)$$

• Smearing of internal layer¹

¹Augustin, Caiazzo, Fiebach, Fuhrmann, John, Linke, Umla : CMAME (200), 3395 - 3409, 2011

- Comparison of results:
 - Accuracy of solution
 - $\begin{array}{l} & \|\cdot\|_{L^2(\Omega)} \\ & \|\nabla(\cdot)\|_{L^2(\Omega)} \end{array}$
 - Efficiency of the scheme
 - Global satisfaction of DMP

$$\operatorname{osc}_{\max}(u_h) := \max_{(x,y)\in\overline{\Omega}} u_h(x,y) - 1 - \min_{(x,y)\in\overline{\Omega}} u_h(x,y)$$

Smearing of internal layer¹
Adaptive grids

¹Augustin, Caiazzo, Fiebach, Fuhrmann, John, Linke, Umla : CMAME (200), 3395 - 3409, 2011

- Comparison of results:
 - Accuracy of solution
 - $\begin{array}{l} & \|\cdot\|_{L^2(\Omega)} \\ & \|\nabla(\cdot)\|_{L^2(\Omega)} \end{array}$
 - Efficiency of the scheme
 - Global satisfaction of DMP

$$\operatorname{osc}_{\max}(u_h) := \max_{(x,y)\in\overline{\Omega}} u_h(x,y) - 1 - \min_{(x,y)\in\overline{\Omega}} u_h(x,y)$$

- Smearing of internal layer¹
- Adaptive grids
 - Conforming closure
 - Hanging nodes

¹Augustin, Caiazzo, Fiebach, Fuhrmann, John, Linke, Umla : CMAME (200), 3395 - 3409, 2011

- Comparison of results:
 - Accuracy of solution
 - $\begin{array}{l} & \|\cdot\|_{L^2(\Omega)} \\ & \|\nabla(\cdot)\|_{L^2(\Omega)} \end{array}$
 - Efficiency of the scheme
 - Global satisfaction of DMP

$$\operatorname{osc}_{\max}(u_h) := \max_{(x,y)\in\overline{\Omega}} u_h(x,y) - 1 - \min_{(x,y)\in\overline{\Omega}} u_h(x,y)$$

- Smearing of internal layer¹
- Adaptive grids
 - Conforming closure
 - Hanging nodes
- For MUAS method neglect η_3

¹Augustin, Caiazzo, Fiebach, Fuhrmann, John, Linke, Umla : CMAME (200), 3395 - 3409, 2011

• Iterative solver

 $\circ~$ Matrix formulation of the algebraic stabilised schemes 1,2

$$(\mathsf{A} + \mathsf{D}) \mathsf{U} = \mathsf{F} + (\mathsf{D} - \mathsf{B}(\mathsf{U})) \mathsf{U}$$

• Fixed point right-hand side

where $\omega > 0$ is a dynamic damping parameter

² J., John: CAMWA (78), 3117-3138, 2019

¹J.John: BAIL 2018 (135), 2020

Algebraic Stabilisation Schemes A Posteriori Error Analysis Adaptive Grids Numerical Studies Conclusions and Outlook

- Example with corner boundary layer¹
- $\Omega = (0, 1)^2, \varepsilon = 10^{-2}, \mathbf{b} = (2, 3)^T, \mathbf{c} = 1, u_b = 0, \mathbf{g} = 0$, and f such that

$$\mathsf{u}(\mathsf{x},\mathsf{y}) = \mathsf{x}\mathsf{y}^2 - \mathsf{y}^2 \exp\left(\frac{2(\mathsf{x}-1)}{\varepsilon}\right) - \mathsf{x}\exp\left(\frac{3(\mathsf{y}-1)}{\varepsilon}\right) + \exp\left(\frac{2(\mathsf{x}-1) + 3(\mathsf{y}-1)}{\varepsilon}\right)$$

- stop of the non linear iteration ²
 - o 10000 iterations
 - $\|\operatorname{residual}\|_2 \leq \sqrt{\#\operatorname{dof}} 10^{-10}$

¹John, Knobloch, Savescu: CMAME (200), 2916–2929, 2011

²J.,John: CAMWA (78), 3117-3138, 2019

Abhinav Jha

Algebraic Stabilisation Schemes A Posteriori Error Analysis Adaptive Grids Numerical Studies Conclusions and Outlook

- Example with corner boundary layer¹
- $\Omega = (0,1)^2, \epsilon = 10^{-2}, \mathbf{b} = (2,3)^T, c = 1, u_b = 0, g = 0$, and f such that

$$\mathsf{u}(\mathsf{x},\mathsf{y}) = \mathsf{x}\mathsf{y}^2 - \mathsf{y}^2 \exp\left(\frac{2(\mathsf{x}-1)}{\varepsilon}\right) - \mathsf{x}\exp\left(\frac{3(\mathsf{y}-1)}{\varepsilon}\right) + \exp\left(\frac{2(\mathsf{x}-1) + 3(\mathsf{y}-1)}{\varepsilon}\right)$$

- stop of the non linear iteration ²
 - 10000 iterations
 - $\|\operatorname{residual}\|_2 \leq \sqrt{\#\operatorname{dof}} 10^{-10}$
- stop of the adaptive algorithm

•
$$\eta \le 10^{-3}$$

•
$$\#dof \approx 10^6$$

¹ John, Knobloch, Savescu: CMAME (200), 2916–2929, 2011

²J.,John: CAMWA (78), 3117-3138, 2019

Abhinav Jha

• $L^2(\Omega)$ Error

• $L^2(\Omega)$ Error of the gradient

Un

• Efficiency

Algebraic Stabilisation Schemes A Posteriori Error Analysis Adaptive Grids Numerical Studies Conclusions and Outlook

- Hemker problem¹
- $\varepsilon = 10^{-4}$, $\mathbf{b} = (1, 0)^T$, $\mathbf{c} = \mathbf{f} = 0$

- stop of the non linear iteration
 - \circ 10000 iterations
 - $\|\operatorname{residual}\|_2 \le \sqrt{\#\operatorname{dof}} 10^{-8}$

¹Hemker: JCAM 76, 277-285, 1996

Algebraic Stabilisation Schemes A Posteriori Error Analysis Adaptive Grids Numerical Studies Conclusions and Outlook

- Hemker problem¹
- $\varepsilon = 10^{-4}$, $\mathbf{b} = (1, 0)^T$, $\mathbf{c} = \mathbf{f} = 0$

- stop of the non linear iteration
 - \circ 10000 iterations
 - $\circ \||\mathbf{residual}||_2 \leq \sqrt{\#\mathbf{dof}} 10^{-8}$
- stop of the adaptive algorithm

$$\circ \ \eta \leq 10^{-3}$$

o #dof $\approx 5 \times 10^5$

¹Hemker: JCAM 76, 277-285, 1996

• Satisfaction of Global DMP

• Smearing of internal layer

Algebraic Stabilisation Schemes A Posteriori Error Analysis Adaptive Grids Numerical Studies Conclusions and Outlook

Figure 1: Adaptively refined conforming grids with $\approx 25,000$ #dof, AFC method and Kuzmin limiter (left), MUAS method (right)

• Efficiency

Conclusions and Outlook

Algebraic Stabilisation Schemes A Posteriori Error Analysis Adaptive Grids Numerical Studies Conclusions and Outlook

- Conclusions¹
 - Accuracy of solution
 - AFC + BJK limiter and MUAS method converge on all grids
 - AFC + Kuzmin limiter does not converge on adaptively refined grids if solution becomes (locally) diffusion-dominated

¹ J.,John, Knobloch: arXiv : 2007.08405 , 2022

²J.,John: CAMWA (78), 3117-3138, 2019

Abhinav Jha

Adaptive Grids for Algebraic Stabilization, 1st March 2023

23

Conclusions and Outlook

Algebraic Stabilisation Schemes A Posteriori Error Analysis Adaptive Grids Numerical Studies Conclusions and Outlook

- Conclusions¹
 - Accuracy of solution
 - AFC + BJK limiter and MUAS method converge on all grids
 - AFC + Kuzmin limiter does not converge on adaptively refined grids if solution becomes (locally) diffusion-dominated
 - Efficiency
 - AFC+ Kuzmin limiter and the MUAS method² most efficient

¹ J.,John, Knobloch: arXiv : 2007.08405 , 2022

²J.,John: CAMWA (78), 3117-3138, 2019

Adaptive Grids for Algebraic Stabilization, 1st March 2023

23

- Conclusions¹
 - Accuracy of solution
 - AFC + BJK limiter and MUAS method converge on all grids
 - AFC + Kuzmin limiter does not converge on adaptively refined grids if solution becomes (locally) diffusion-dominated
 - Efficiency
 - AFC+ Kuzmin limiter and the MUAS method² most efficient
 - Satisfaction of DMP
 - Global DMP satisfied on grids with hanging nodes
 - AFC+ Kuzmin limiter did not satisfy on conformally closed grids

²J.,John: CAMWA (78), 3117-3138, 2019

¹ J.,John, Knobloch: arXiv : 2007.08405 , 2022

- Conclusions¹
 - Accuracy of solution
 - AFC + BJK limiter and MUAS method converge on all grids
 - AFC + Kuzmin limiter does not converge on adaptively refined grids if solution becomes (locally) diffusion-dominated
 - Efficiency
 - AFC+ Kuzmin limiter and the MUAS method² most efficient
 - Satisfaction of DMP
 - Global DMP satisfied on grids with hanging nodes
 - AFC+ Kuzmin limiter did not satisfy on conformally closed grids
 - Smearing
 - AFC + BJK limiter sharpest layer
 - For fine grids, all values close to reference value

²J.,John: CAMWA (78), 3117-3138, 2019

¹ J.,John, Knobloch: arXiv : 2007.08405 , 2022

- Conclusions¹
 - Accuracy of solution
 - AFC + BJK limiter and MUAS method converge on all grids
 - AFC + Kuzmin limiter does not converge on adaptively refined grids if solution becomes (locally) diffusion-dominated
 - Efficiency
 - AFC+ Kuzmin limiter and the MUAS method² most efficient
 - Satisfaction of DMP
 - Global DMP satisfied on grids with hanging nodes
 - AFC+ Kuzmin limiter did not satisfy on conformally closed grids
 - Smearing
 - AFC + BJK limiter sharpest layer
 - For fine grids, all values close to reference value
- MUAS method most promising
 - ¹ J.,John, Knobloch: arXiv : 2007.08405 , 2022
 - ²J.,John: CAMWA (78), 3117-3138, 2019

Abhinav Jha

Outlook

- Development of estimators for MUAS method
- Numerical studies in 3D
- Comparison with Monolithic Convex Limiter¹²

¹Kuzmin: CMAME (361), 112804, 2020

² J., Partl, Ahmed, Kuzmin: JNUM, 10.1515/jnma-2021-0123, 2022

