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1 Algebraic Stabilisation Schemes

Algebraic Stabilisation Schemes A Posteriori Error Analysis Adaptive Grids Numerical Studies Conclusions and Outlook

• Steady-state convection-diffusion-reaction equation

−ε∆u+ b · ∇u+ cu = f in Ω,

u = ub on ΓD,

−ε∇u · n = g on ΓN

◦ Ω – bounded polyhedral Lipschitz domain in Rd, d ∈ {2, 3}
◦ n – outward pointing unit normal

◦ Assume (
c(x)− 1

2
∇ · b(x)

)
≥ σ0 > 0

◦ Interested in convection-dominated regime, ε � ‖b‖L∞(Ω)L

◦ L – Characteristic length of the problem
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1 Algebraic Stabilisation Schemes
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• Ideal discretization

1. Accurate and sharp layers

2. Physically consistent results (no spurious oscillations)

3. Efficient computation of the solutions

• Because of 2nd property: Algebraic stabilised schemes very well suited
for applications

• Alternate approach: Adaptive grids

• Idea: Combine both the approaches
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2 A Posteriori Analysis
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• Variational problem for AFC scheme1

Find uh ∈ Vh such that

ah(uh, vh) + dh(uh; uh, vh) = 〈f, vh〉 ∀ vh ∈ Vh

◦ Vh− finite element space with homogeneous Dirichlet

boundary conditions (Vh ⊂ V)

◦ stabilization

dh(w; z, v) =
N∑

i,j=1

(1− αij(w))dij(zj − zi)vi ∀ w, v, z ∈ Vh

• Energy norm

‖uh‖2a = ε|uh|21 + σ‖uh‖20

1
Barrenechea, John, Knobloch: arXiv : 2204.07480, 2022
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1 Residual Based Approach
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Theorem (Global a posteriori error estimate)

A global a posteriori error estimate for the energy norm is given by1

‖u− uh‖2a ≤ η2
1 + η2

2 + η2
3 ,

where

η2
1 =

∑
K∈Th

min

{
4C2

I

σ
,
4C2

I h
2
K

ε

}
‖RK(uh)‖2L2(K),

η2
2 =

∑
F∈Fh

min

{
4C2

FhF

ε
,

4C2
F

σ1/2ε1/2

}
‖RF(uh)‖2L2(F),

η2
3 =

∑
E∈Eh

min

{
4κ1h

2
E

ε
,
4κ2

σ

}
(1− αE)

2|dE|2h1−d
E ‖∇uh · tE‖2L2(E)

1
J.: CAMWA, 97(1), 86–99, 2021
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3 Hanging Nodes
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• Standard strategy for solving

SOLVE → ESTIMATE → MARK → REFINE

• Hanging nodes

◦ Preserves angles after red-refinement

◦ Avoids prism and pyramids in 3D mesh refinement

◦ hp adaptive refinement

• Certain stabilized schemes rely on the property of triangulation 1

1
Xu, Zikatanov: MC, 68(228), 1429–1446, 1999
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3 Adaptive Grids
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Lemma
Let T be a non-conforming triangulation ofΩ, i.e., T has hanging nodes. Then, for all q ∈ H(T ) there are coefficients aqp

with p ∈ NF(T ) \ H(T ) such that all v ∈ Vh can be represented as1,2

v(q) =
∑

p∈NF(T )\H(T )

aqpv(p)

Theorem
Let

{
T0, · · · ,Tj

}
be a grid hierarchy onΩwith T0 being conforming. Let us denote T = Tj , i.e., the final refinement level.

Then a basis of Vh is given by1

B(T ) :=

ϕp = ϕ
nc
p +

∑
q∈H(T )

aqpϕ
nc
q : p ∈ NF(T ) \ H(T )



1
Gräser : PhD Thesis, FU Berlin 2011

2
J.: PhD Thesis, FU Berlin 2020
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1 Implementation
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• Satisfaction of DMP

◦ DMP is satisfied if1

aii > 0,

aij + aji ≤ 0,

where aij is in the stiffness matrix

1
Barrenechea, John, Knobloch: SINUM (54), 2427–2451, 2016
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• Consider the sample patch

i1 i2

i3i4

i0

K1

K2

K3
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• Initial assembly 
a00 a01 a02 a03 a04

a10 a11 a12 a13 a14

a20 a21 a22 a23 a24

a30 a31 a32 a33 a34

a40 a41 a42 a43 a44

 ,


b0

b1

b2

b3

b4



• Conforming test space and continuity of the hanging node
1 − 1

2 0 − 1
2 0

a10 +
a00
2 a11 +

a01
2 a12 +

a02
2 a13 +

a03
2 a14 +

a04
2

a20 a21 a22 a23 a24

a30 +
a00
2 a31 +

a01
2 a32 +

a02
2 a33 +

a03
2 a34 +

a04
2

a40 a41 a42 a43 a44

 ,


0

b1 +
b0
2

b2

b3 +
b0
2

b4
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1 Implementation
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• Conforming ansatz space
1 − 1

2 0 − 1
2 0

0 a11 +
a01
2 + a10

2 + a00
4 a12 +

a02
2 a13 +

a03
2 + a10

2 + a00
4 a14 +

a04
2

0 a21 +
a20
2 a22 a23 +

a20
2 a24

0 a31 +
a01
2 + a30

2 + a00
4 a32 +

a02
2 a33 +

a03
2 + a30

2 + a00
4 a34 +

a04
2

0 a41 +
a40
2 a42 a43 +

a40
2 a44



• Increases the matrix stencil by few elements
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4 Numerical Studies
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• Algebraic stabilisation schemes

◦ Algebraic Flux Correction (AFC) schemes

− Kuzmin limiter1

− BJK limiter2,3

◦ Monotone Upwind-type Algebraically Stabilized (MUAS) method4

◦ Drops symmetric condition on αij

◦ AFC system is modified

(A+ D)U = F + (D− B)U,

where

bij = max
{(

1− αij(u)
)
aij, 0,

(
1− αji(u)

)
aji
}

1
Kuzmin: in Proc. Int. Conf. Comput. Meth. for Coupled Problems in Science and Engineering, CIMNE, 2007

2
Barrenechea, John, Knobloch: M3AS (27), 525–548, 2017

3
Barrenechea, John, Knobloch: arXiv: 2204.07480, 2022

4
John, Knobloch: arXiv: 2111.08697, 2021
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4 Numerical Studies
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• Comparison of results:

◦ Accuracy of solution

− ‖ · ‖L2(Ω)

− ‖∇(·)‖L2(Ω)

◦ Efficiency of the scheme

◦ Global satisfaction of DMP

oscmax(uh) := max
(x,y)∈Ω

uh(x, y)− 1− min
(x,y)∈Ω

uh(x, y)

◦ Smearing of internal layer1

◦ Adaptive grids

− Conforming closure

− Hanging nodes

• For MUAS method neglect η3

1
Augustin, Caiazzo, Fiebach, Fuhrmann, John, Linke, Umla : CMAME (200), 3395 - 3409, 2011
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• Iterative solver

◦ Matrix formulation of the algebraic stabilised schemes1,2

(A+ D)U = F + (D− B(U))U

◦ Fixed point right-hand side

(A+ D) Ũµ = F + (D− B(Uµ))Uµ,

Uµ+1 = ωŨµ + (1− ω)Uµ,

where ω > 0 is a dynamic damping parameter

1
J.John: BAIL 2018 (135), 2020

2
J.,John: CAMWA (78), 3117-3138, 2019
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• Example with corner boundary layer1

• Ω = (0, 1)2, ε = 10−2, b = (2, 3)T , c = 1, ub = 0, g = 0, and f such that

u(x, y) = xy2 − y2 exp

(
2(x − 1)

ε

)
− x exp

(
3(y − 1)

ε

)
+ exp

(
2(x − 1) + 3(y − 1)

ε

)

• stop of the non linear iteration 2

◦ 10000 iterations
◦ ‖residual‖2 ≤

√
#dof10−10

• stop of the adaptive algorithm

◦ η ≤ 10−3

◦ #dof ≈ 106

1
John, Knobloch, Savescu: CMAME (200), 2916–2929, 2011

2
J.,John: CAMWA (78), 3117-3138, 2019
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• L2(Ω) Error
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• L2(Ω) Error of the gradient
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• Efficiency
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• Hemker problem1

• ε = 10−4, b = (1, 0)T , c = f = 0

• stop of the non linear iteration

◦ 10000 iterations
◦ ‖residual‖2 ≤

√
#dof10−8

• stop of the adaptive algorithm

◦ η ≤ 10−3

◦ #dof ≈ 5× 105

1
Hemker: JCAM 76, 277-285, 1996
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• Satisfaction of Global DMP
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• Smearing of internal layer
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Figure 1: Adaptively refined conforming grids with ≈ 25, 000 #dof, AFC method and

Kuzmin limiter (left), MUAS method (right)
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• Efficiency
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• Conclusions1

◦ Accuracy of solution

− AFC + BJK limiter and MUAS method converge on all grids

− AFC + Kuzmin limiter does not converge on adaptively refined

grids if solution becomes (locally) diffusion-dominated

◦ Efficiency

− AFC+ Kuzmin limiter and the MUAS method2 most efficient

◦ Satisfaction of DMP

− Global DMP satisfied on grids with hanging nodes

− AFC+ Kuzmin limiter did not satisfy on conformally closed grids

◦ Smearing

− AFC + BJK limiter sharpest layer

− For fine grids, all values close to reference value

• MUAS method most promising

1
J.,John, Knobloch: arXiv : 2007.08405 , 2022

2
J.,John: CAMWA (78), 3117-3138, 2019
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• Outlook

◦ Development of estimators for MUAS method

◦ Numerical studies in 3D

◦ Comparison with Monolithic Convex Limiter12

1
Kuzmin: CMAME (361), 112804, 2020

2
J., Partl, Ahmed, Kuzmin: JNUM, 10.1515/jnma-2021-0123, 2022
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