A Residual based a Posteriori Error Estimators for Algebraic Flux Correction Scheme

Abhinav Jha

Applied and Computational Mathematics, RWTH Aachen University

15th World Congress on Computational Mechanics and 8th Asian Pacific Congress on Computational Mechanics 31st July-5th August 2022

2 A Posteriori Error Analysis 2.1 Residual Based Approach 2.2 AFC-SUPG Approach 2.3 Numerical Studies

3 Conclusions and Outlook

Algebraic Flux Correction Schemes A Posteriori Error Analysis Conclusions and Outlook

• Steady-state convection-diffusion-reaction equation

$$-\varepsilon \Delta u + \mathbf{b} \cdot \nabla u + cu = f \quad \text{in } \Omega$$

$$u = u_b \quad \text{on } \Gamma_D,$$

$$-\varepsilon \nabla u \cdot \mathbf{n} = g \quad \text{on } \Gamma_N$$
(1)

- $\circ \ \Omega$ bounded polyhedral Lipschitz domain in \mathbb{R}^d , $d \in \{2, 3\}$
- n outward pointing unit normal
- Assume

$$\left(\mathsf{c}(\mathsf{x}) - \frac{1}{2} \nabla \cdot \mathsf{b}(\mathsf{x})\right) \ge \sigma > 0$$

Interested in convection-dominated regime, ε ≪ ||b||_{L∞(Ω)}L
 L - Characteristic length of the problem

Algebraic Flux Correction Schemes A Posteriori Error Analysis Conclusions and Outlook

- Ideal discretization
 - 1. Accurate and sharp layers
 - Many discretizations satisfy this property, e.g., SUPG
 - Reasonably well for AFC schemes

¹J.,John: CAMWA (78), 3117-3138, 2019

Algebraic Flux Correction Schemes A Posteriori Error Analysis Conclusions and Outlook

- Ideal discretization
 - 1. Accurate and sharp layers
 - Many discretizations satisfy this property, e.g., SUPG
 - Reasonably well for AFC schemes
 - 2. Physically consistent results (no spurious oscillations)
 - Most discretizations violate this property, e.g., SUPG, SOLD schemes
 - Satisfied for AFC schemes

¹J.,John: CAMWA (78), 3117-3138, 2019

Algebraic Flux Correction Schemes A Posteriori Error Analysis Conclusions and Outlook

- Ideal discretization
 - 1. Accurate and sharp layers
 - Many discretizations satisfy this property, e.g., SUPG
 - Reasonably well for AFC schemes
 - 2. Physically consistent results (no spurious oscillations)
 - Most discretizations violate this property, e.g., SUPG, SOLD schemes
 - Satisfied for AFC schemes
 - 3. Efficient computation of the solutions
 - Satisfied for linear discretizations
 - Usually not satisfied for nonlinear discretizations, like AFC schemes ¹

¹J.,John: CAMWA (78), 3117-3138, 2019

Algebraic Flux Correction Schemes A Posteriori Error Analysis Conclusions and Outlook

- Ideal discretization
 - 1. Accurate and sharp layers
 - Many discretizations satisfy this property, e.g., SUPG
 - Reasonably well for AFC schemes
 - 2. Physically consistent results (no spurious oscillations)
 - Most discretizations violate this property, e.g., SUPG, SOLD schemes
 - Satisfied for AFC schemes
 - 3. Efficient computation of the solutions
 - Satisfied for linear discretizations
 - Usually not satisfied for nonlinear discretizations, like AFC schemes ¹
- Because of 2nd property: AFC schemes very well suited for applications

¹J.,John: CAMWA (78), 3117-3138, 2019

A Posteriori Analysis

Algebraic Flux Correction Schemes A Posteriori Error Analysis Conclusions and Outlook

• Variational problem for AFC scheme Find $u_h \in V_h$ such that

$$a_h(u_h, v_h) + d_h(u_h; u_h, v_h) = \langle f, v_h \rangle \quad \forall v_h \in V_h$$

- ∘ V_h finite element space with homogeneous Dirichlet boundary conditions ($V_h ⊂ V$)
- stabilization

$$d_{\mathsf{h}}(\mathsf{w}; \mathsf{z}, \mathsf{v}) = \sum_{i,j=1}^{\mathsf{N}} (1 - \alpha_{ij}(\mathsf{w})) d_{ij}(\mathsf{z}_j - \mathsf{z}_i) \mathsf{v}_i \quad \forall \ \mathsf{w}, \mathsf{v}, \mathsf{z} \in \mathsf{V}_{\mathsf{h}}$$

¹Barrenechea, John, Knobloch, Rankin: SeMA Journal (75), 655-685, 2018

A Posteriori Analysis

Algebraic Flux Correction Schemes A Posteriori Error Analysis Conclusions and Outlook

• Variational problem for AFC scheme Find $u_h \in V_h$ such that

$$a_h(u_h, v_h) + d_h(u_h; u_h, v_h) = \langle f, v_h \rangle \quad \forall v_h \in V_h$$

- ∘ V_h finite element space with homogeneous Dirichlet boundary conditions ($V_h ⊂ V$)
- stabilization

$$d_{\mathsf{h}}(\mathsf{w}; \mathsf{z}, \mathsf{v}) = \sum_{i,j=1}^{\mathsf{N}} (1 - \alpha_{ij}(\mathsf{w})) d_{ij}(\mathsf{z}_j - \mathsf{z}_i) \mathsf{v}_i \quad \forall \mathsf{w}, \mathsf{v}, \mathsf{z} \in \mathsf{V}_{\mathsf{h}}$$

• Another representation of stabilization for $w, v, z \in V_h$,¹

$$d_{h}(\mathbf{w}; \mathbf{z}, \mathbf{v}) = \sum_{\mathbf{E} \in \mathcal{E}_{h}} (1 - \alpha_{\mathbf{E}}(\mathbf{w})) d_{\mathbf{E}} h_{\mathbf{E}} \left(\nabla \mathbf{z} \cdot \mathbf{t}_{\mathbf{E}}, \nabla \mathbf{v} \cdot \mathbf{t}_{\mathbf{E}} \right)$$

¹Barrenechea, John, Knobloch, Rankin: SeMA Journal (75), 655-685, 2018

Abhinav Jha

Algebraic Flux Correction Schemes A Posteriori Error Analysis Conclusions and Outlook

AFC norm

$$\|\boldsymbol{u}_h\|_{\mathsf{AFC}}^2 = \|\boldsymbol{u}_h\|_a^2 + \boldsymbol{d}_h(\boldsymbol{u}_h, \boldsymbol{u}_h, \boldsymbol{u}_h) \quad \forall \boldsymbol{u}_h \in \boldsymbol{V}_h$$

• where $\|\mathbf{u}_h\|_a^2 = \boldsymbol{\varepsilon} |\mathbf{u}_h|_1^2 + \sigma \|\mathbf{u}_h\|_0^2$

¹ John, Novo: CMAME (255), 289-305, 2013

Algebraic Flux Correction Schemes A Posteriori Error Analysis Conclusions and Outlook

AFC norm

$$\|\mathbf{u}_{h}\|_{\mathsf{AFC}}^{2} = \|\mathbf{u}_{h}\|_{a}^{2} + d_{h}(\mathbf{u}_{h}, \mathbf{u}_{h}, \mathbf{u}_{h}) \quad \forall \mathbf{u}_{h} \in \mathsf{V}_{h}$$

• where $\|\boldsymbol{u}_h\|_a^2 = \boldsymbol{\varepsilon} |\boldsymbol{u}_h|_1^2 + \sigma \|\boldsymbol{u}_h\|_0^2$

• Let *I_hu* denote the Scott-Zhang interpolation operator. Galerkin orthogonality arguments

$$\begin{aligned} \|\boldsymbol{u} - \boldsymbol{u}_h\|_{\mathsf{AFC}}^2 &= \langle \boldsymbol{f}, \boldsymbol{u} - \boldsymbol{I}_h \boldsymbol{u} \rangle + \langle \boldsymbol{g}, \boldsymbol{u} - \boldsymbol{I}_h \boldsymbol{u} \rangle_{\Gamma_N} - \boldsymbol{a}_h(\boldsymbol{u}_h, \boldsymbol{u} - \boldsymbol{I}_h \boldsymbol{u}) \\ &+ \boldsymbol{d}_h(\boldsymbol{u}_h; \boldsymbol{u}, \boldsymbol{I}_h \boldsymbol{u} - \boldsymbol{u}_h) \end{aligned}$$

¹ John, Novo: CMAME (255), 289-305, 2013

Algebraic Flux Correction Schemes A Posteriori Error Analysis Conclusions and Outlook

AFC norm

$$\|\boldsymbol{u}_h\|_{\mathsf{AFC}}^2 = \|\boldsymbol{u}_h\|_a^2 + \boldsymbol{d}_h(\boldsymbol{u}_h, \boldsymbol{u}_h, \boldsymbol{u}_h) \quad \forall \boldsymbol{u}_h \in \mathsf{V}_h$$

• where $\|\boldsymbol{u}_h\|_a^2 = \boldsymbol{\varepsilon} |\boldsymbol{u}_h|_1^2 + \sigma \|\boldsymbol{u}_h\|_0^2$

• Let *I_hu* denote the Scott-Zhang interpolation operator. Galerkin orthogonality arguments

$$\begin{aligned} \|\boldsymbol{u} - \boldsymbol{u}_{h}\|_{\mathsf{AFC}}^{2} &= \langle \boldsymbol{f}, \boldsymbol{u} - \boldsymbol{I}_{h}\boldsymbol{u} \rangle + \langle \boldsymbol{g}, \boldsymbol{u} - \boldsymbol{I}_{h}\boldsymbol{u} \rangle_{\Gamma_{\mathsf{N}}} - \boldsymbol{a}_{h}(\boldsymbol{u}_{h}, \boldsymbol{u} - \boldsymbol{I}_{h}\boldsymbol{u}) \\ &+ \boldsymbol{d}_{h}(\boldsymbol{u}_{h}; \boldsymbol{u}, \boldsymbol{I}_{h}\boldsymbol{u} - \boldsymbol{u}_{h}) \end{aligned}$$

• Standard residual a posteriori error bound ¹

$$\langle \mathbf{f}, \mathbf{u} - \mathbf{I}_{h}\mathbf{u} \rangle + \langle \mathbf{g}, \mathbf{u} - \mathbf{I}_{h}\mathbf{u} \rangle_{\Gamma_{N}} - a_{h}(\mathbf{u}_{h}, \mathbf{u} - \mathbf{I}_{h}\mathbf{u}) = \sum_{K \in \mathcal{T}_{h}} (R_{K}(\mathbf{u}_{h}), \mathbf{u} - \mathbf{I}_{h}\mathbf{u})_{K} + \sum_{F \in \mathcal{F}_{h}} \langle R_{F}(\mathbf{u}_{h}), \mathbf{u} - \mathbf{I}_{h}\mathbf{u} \rangle_{F}$$

¹ John, Novo: CMAME (255), 289-305, 2013

Abhinav Jha

Algebraic Flux Correction Schemes A Posteriori Error Analysis Conclusions and Outlook

with

$$\begin{array}{lll} R_{K}(u_{h}) & := & f + \varepsilon \Delta u_{h} - \mathbf{b} \cdot \nabla u_{h} - c u_{h}|_{K}, \\ R_{F}(u_{h}) & := & \begin{cases} -\varepsilon [|\nabla u_{h} \cdot \mathbf{n}_{F}|]_{F} & \text{if } F \in \mathcal{F}_{h,\Omega}, \\ g - \varepsilon (\nabla u_{h} \cdot \mathbf{n}_{F}) & \text{if } F \in \mathcal{F}_{h,N}, \\ 0 & \text{if } F \in \mathcal{F}_{h,D} \end{cases}$$

Algebraic Flux Correction Schemes A Posteriori Error Analysis Conclusions and Outlook

with

$$\begin{split} R_{K}(u_{h}) &:= f + \varepsilon \Delta u_{h} - \mathbf{b} \cdot \nabla u_{h} - cu_{h}|_{K}, \\ R_{F}(u_{h}) &:= \begin{cases} -\varepsilon [|\nabla u_{h} \cdot \mathbf{n}_{F}|]_{F} & \text{if } F \in \mathcal{F}_{h,\Omega}, \\ g - \varepsilon (\nabla u_{h} \cdot \mathbf{n}_{F}) & \text{if } F \in \mathcal{F}_{h,N}, \\ 0 & \text{if } F \in \mathcal{F}_{h,D} \end{cases} \end{split}$$

• Using interpolation estimates, Cauchy-Schwarz, and Young's inequality

$$\begin{split} \|\boldsymbol{u} - \boldsymbol{u}_{h}\|_{a}^{2} &+ \frac{C_{Y}}{C_{Y} - 1} \boldsymbol{d}_{h}(\boldsymbol{u}_{h}; \boldsymbol{u} - \boldsymbol{u}_{h}, \boldsymbol{u} - \boldsymbol{u}_{h}) \\ &\leq \quad \frac{C_{Y}^{2}}{2(C_{Y} - 1)} \sum_{K \in \mathcal{T}_{h}} \min\left\{\frac{C_{I}^{2}}{\sigma}, \frac{C_{I}^{2}h_{K}^{2}}{\varepsilon}\right\} \|\boldsymbol{R}_{K}(\boldsymbol{u}_{h})\|_{L^{2}(K)}^{2} \\ &+ \frac{C_{Y}^{2}}{2(C_{Y} - 1)} \sum_{F \in \mathcal{F}_{h}} \min\left\{\frac{C_{F}^{2}h_{F}}{\varepsilon}, \frac{C_{F}^{2}}{\sigma^{1/2}\varepsilon^{1/2}}\right\} \|\boldsymbol{R}_{F}(\boldsymbol{u}_{h})\|_{L^{2}(F)}^{2} \\ &+ \frac{C_{Y}}{C_{Y} - 1} \boldsymbol{d}_{h}(\boldsymbol{u}_{h}; \boldsymbol{u}, \boldsymbol{l}_{h}\boldsymbol{u} - \boldsymbol{u}_{h}) \end{split}$$

Abhinav Jha

Algebraic Flux Correction Schemes A Posteriori Error Analysis Conclusions and Outlook

• Linearity of $d_h(\cdot; \cdot, \cdot)$,

 $d_h(u_h; u, l_h u - u_h) = d_h(u_h; u - u_h, l_h u - u_h) + d_h(u_h; u_h, l_h u - u_h)$

Algebraic Flux Correction Schemes A Posteriori Error Analysis Conclusions and Outlook

• Linearity of $d_h(\cdot; \cdot, \cdot)$,

 $d_h(u_h; u, l_h u - u_h) = d_h(u_h; u - u_h, l_h u - u_h) + d_h(u_h; u_h, l_h u - u_h)$

 Using interpolation estimates, Cauchy-Schwarz, trace inequality, inverse estimate, and Young's inequality

$$\begin{aligned} d_h(u_h; u_h, I_h u - u_h) &\leq \frac{C_Y}{2} \sum_{E \in \mathcal{E}_h} \min\left\{\frac{\kappa_1 h_E^2}{\varepsilon}, \frac{\kappa_2}{\sigma}\right\} (1 - \alpha_E)^2 |d_E|^2 h_E^{1-d} \\ &\times \|\nabla u_h \cdot \mathbf{t}_E\|_{L^2(E)}^2 + \frac{1}{C_Y} \|u - u_h\|_a^2, \end{aligned}$$

where

$$\begin{split} \kappa_1 &= \quad \mathbf{C}_{\mathrm{edge,max}} \left(1 + (1 + \mathbf{C}_{\mathrm{I}})^2 \right), \\ \kappa_2 &= \quad \mathbf{C}_{\mathrm{inv}}^2 \mathbf{C}_{\mathrm{edge,max}} \left(1 + (1 + \mathbf{C}_{\mathrm{I}})^2 \right). \end{split}$$

Abhinav Jha

Algebraic Flux Correction Schemes A Posteriori Error Analysis Conclusions and Outlook

Theorem (Global a posteriori error estimate)

A global a posteriori error estimate for the energy norm is given by

$$\|\mathbf{u} - \mathbf{u}_{h}\|_{a}^{2} \leq \eta_{1}^{2} + \eta_{2}^{2} + \eta_{3}^{2},$$

where

$$\begin{split} \eta_1^2 &= \sum_{K \in \mathcal{T}_h} \min\left\{\frac{4C_l^2}{\sigma}, \frac{4C_l^2h_K^2}{\varepsilon}\right\} \|R_K(u_h)\|_{L^2(K)}^2, \\ \eta_2^2 &= \sum_{F \in \mathcal{F}_h} \min\left\{\frac{4C_F^2h_F}{\varepsilon}, \frac{4C_F^2}{\sigma^{1/2}\varepsilon^{1/2}}\right\} \|R_F(u_h)\|_{L^2(F)}^2, \\ \eta_3^2 &= \sum_{E \in \mathcal{E}_h} \min\left\{\frac{4\kappa_1h_E^2}{\varepsilon}, \frac{4\kappa_2}{\sigma}\right\} (1-\alpha_E)^2 |d_E|^2 h_E^{1-d} \|\nabla u_h \cdot \mathbf{t}_E\|_{L^2(E)}^2. \end{split}$$

Algebraic Flux Correction Schemes A Posteriori Error Analysis Conclusions and Outlook

• Formal local lower bound for a mesh cell K

$$\eta_{\mathsf{K}}^2 = \eta_{\mathsf{Int},\mathsf{K}}^2 + \sum_{F \in \mathcal{F}_h(K)} \eta_{\mathsf{Face},F}^2 + \sum_{E \in \mathcal{E}_h(K)} \eta_{d_h,E}^2$$

Algebraic Flux Correction Schemes A Posteriori Error Analysis Conclusions and Outlook

• Formal local lower bound for a mesh cell K

$$\eta_{\mathrm{K}}^{2} = \eta_{\mathrm{Int},\mathrm{K}}^{2} + \sum_{F \in \mathcal{F}_{h}(K)} \eta_{\mathrm{Face},\mathrm{F}}^{2} + \sum_{E \in \mathcal{E}_{h}(K)} \eta_{d_{h},\mathrm{E}}^{2}$$

where

$$\eta_{\text{Int},K}^{2} = \min\left\{\frac{4C_{l}^{2}}{\sigma}, \frac{4C_{l}^{2}h_{K}^{2}}{\varepsilon}\right\} \|R_{K,h}(u_{h})\|_{L^{2}(K)}^{2},$$

$$\eta_{\text{Face},F}^{2} = \frac{1}{2}\min\left\{\frac{4C_{F}^{2}h_{F}}{\varepsilon}, \frac{4C_{F}^{2}}{\sigma^{1/2}\varepsilon^{1/2}}\right\} \|R_{F}(u_{h})\|_{L^{2}(F)}^{2},$$

$$\eta_{d_{h},E}^{2} = \min\left\{\frac{4\kappa_{1}h_{E}^{2}}{\varepsilon}, \frac{4\kappa_{2}}{\sigma}\right\} (1-\alpha_{E})^{2}|d_{E}|^{2}h_{E}^{1-d}\|\nabla u_{h} \cdot \mathbf{t}_{E}\|_{L^{2}(E)}^{2}$$

Algebraic Flux Correction Schemes A Posteriori Error Analysis Conclusions and Outlook

• Using standard bubble function arguments

$$\begin{split} \eta_{\mathrm{Int},K} &\leq C \left(\max \left\{ C_{K}^{2} + \frac{C_{K}h_{K}}{\varepsilon} \| \mathbf{b} \|_{L^{\infty}(K)}, \frac{C_{K}}{\sigma} \| c \|_{L^{\infty}(K)} \right\} \| u - u_{h} \|_{a,K} \\ &+ \frac{h_{K}}{\varepsilon^{1/2}} C_{K} \Big(\| f - f_{h} \|_{0,K} + \| (\mathbf{b} - \mathbf{b}_{h}) \cdot \nabla u_{h} \|_{0,K} + \| (c - c_{h}) u_{h} \|_{0,K} \Big) \Big) \end{split}$$

Algebraic Flux Correction Schemes A Posteriori Error Analysis Conclusions and Outlook

• Using standard bubble function arguments

$$\begin{split} \eta_{\mathrm{int},K} &\leq C \left(\max\left\{ \mathsf{C}_{\mathsf{K}}^2 + \frac{\mathsf{C}_{\mathsf{K}} \mathsf{h}_{\mathsf{K}}}{\varepsilon} \| \mathbf{b} \|_{L^{\infty}(\mathsf{K})}, \frac{\mathsf{C}_{\mathsf{K}}}{\sigma} \| \mathbf{c} \|_{L^{\infty}(\mathsf{K})} \right\} \| u - u_h \|_{a,\mathsf{K}} \\ &+ \frac{h_{\mathsf{K}}}{\varepsilon^{1/2}} \mathsf{C}_{\mathsf{K}} \Big(\| f - f_h \|_{0,\mathsf{K}} + \| (\mathbf{b} - \mathbf{b}_h) \cdot \nabla u_h \|_{0,\mathsf{K}} + \| (\mathbf{c} - \mathbf{c}_h) u_h \|_{0,\mathsf{K}} \Big) \Big) \end{split}$$

and

$$\begin{split} \eta_{\text{Face},F} &\leq C \left(\max\left\{ C_{F} + \frac{C_{F}h_{F} \|\mathbf{b}\|_{L^{\infty}(\omega_{F})}}{\varepsilon}, \frac{C_{F}h_{F} \|c\|_{L^{\infty}(\omega_{F})}}{\varepsilon^{1/2}\sigma^{1/2}} \right\} \|u - u_{h}\|_{a,\omega_{F}} \\ &+ \delta_{F \in \mathcal{F}_{h,N}} \frac{h_{F}^{1/2}}{\varepsilon^{1/2}} \|g - g_{h}\|_{L^{2}(F)} \\ &+ \sum_{K \in \omega_{F}} \left[\eta_{\text{Int},K} + \frac{h_{K}}{\varepsilon^{1/2}} \left(\|f - f_{h}\|_{0,K} + \|(\mathbf{b} - \mathbf{b}_{h}) \cdot \nabla u_{h}\|_{0,K} \right. \\ &+ \|(c - c_{h})u_{h}\|_{0,K} \right) \right] \end{split}$$

Abhinav Jha

Algebraic Flux Correction Schemes A Posteriori Error Analysis Conclusions and Outlook

• For the stabilization term, from ¹ we get

 $|d_{\mathsf{E}}| \leq \mathsf{C}\left(\varepsilon + \|\mathbf{b}\|_{L^{\infty}(\Omega)}h + \|c\|_{L^{\infty}(\Omega)}h^{2}\right)h_{\mathsf{E}}^{d-2}$

¹Barrenechea, John, Knobloch, Rankin: SeMA Journal (75), 655-685, 2018

Algebraic Flux Correction Schemes A Posteriori Error Analysis Conclusions and Outlook

• For the stabilization term, from ¹ we get

$$|d_{\mathsf{E}}| \leq \mathsf{C}\left(\varepsilon + \|\mathbf{b}\|_{L^{\infty}(\Omega)}h + \|\mathbf{c}\|_{L^{\infty}(\Omega)}h^{2}\right)h_{\mathsf{E}}^{d-2}$$

Hence,

$$\begin{split} \eta_{d_{h},E} &\leq C \sum_{E \in \mathcal{E}_{h}} (1 - \alpha_{E}) \left(\varepsilon + \| \mathbf{b} \|_{L^{\infty}(\Omega)} h + \| c \|_{L^{\infty}(\Omega)} h^{2} \right) \\ &\times \frac{h_{E}^{(3-d)/2}}{\varepsilon^{1/2}} \| \nabla u_{h} \cdot \mathbf{t}_{E} \|_{L^{2}(E)} \end{split}$$

¹Barrenechea, John, Knobloch, Rankin: SeMA Journal (75), 655-685, 2018

Abhinav Jha

Algebraic Flux Correction Schemes A Posteriori Error Analysis Conclusions and Outlook

Theorem (Formal local lower bound)

There exists a constant C > 0, independent of the size of elements of \mathcal{T} , such that, for every $K \in \mathcal{T}$, the following formal local lower bound holds

$$\begin{split} \eta_{\text{Int},K} + \sum_{K \in \mathcal{F}_{h}(K)} \eta_{\text{Face},F} + \sum_{E \in \mathcal{E}_{h}(K)} \eta_{d_{h},E} \\ &\leq \max \left\{ C_{K}^{2} + \frac{C_{K}h_{K}}{\varepsilon} \|\mathbf{b}\|_{L^{\infty}(K)}, \frac{C_{K}}{\sigma} \|c\|_{L^{\infty}(K)} \right\} \|u - u_{h}\|_{a,\omega_{K}} \\ &+ C \sum_{K \in \omega_{K}} \frac{h_{K}}{\varepsilon^{1/2}} \left(\|f - f_{h}\|_{0,K} + \|(\mathbf{b} - \mathbf{b}_{h}) \cdot \nabla u_{h}\|_{0,K} + \|(c - c_{h})u_{h}\|_{0,K} \right) \\ &+ C \sum_{F \in \mathcal{F}_{h}(K)} \delta_{F \in \mathcal{F}_{h,N}} \frac{h_{E}^{1/2}}{\varepsilon^{1/2}} \|g - g_{h}\|_{L^{2}(F)} \\ &+ \sum_{E \in \mathcal{E}_{h}(K)} h^{1-d/2} \frac{h^{1/2}}{\varepsilon^{1/2}} \left(\varepsilon + \|\mathbf{b}\|_{L^{\infty}(\Omega)} h + \|c\|_{L^{\infty}(\Omega)} h^{2} \right) \|\nabla u_{h} \cdot \mathbf{t}_{E}\|_{L^{2}(E)}. \end{split}$$

AFC-SUPG Approach

Algebraic Flux Correction Schemes A Posteriori Error Analysis Conclusions and Outlook

- The initial solution for the nonlinear loop is the SUPG solution ¹
 - $u_{AFC} := AFC$ solution
 - $u_{SUPG} := SUPG$ solution
- By triangle inequality

$$\begin{aligned} \|\mathbf{u} - \mathbf{u}_{\mathsf{AFC}}\|_{a}^{2} &\leq 2\left(\|\mathbf{u} - \mathbf{u}_{\mathsf{SUPG}}\|_{a}^{2} + \|\mathbf{u}_{\mathsf{SUPG}} - \mathbf{u}_{\mathsf{AFC}}\|_{a}^{2}\right) \\ &\leq 2\left(\|\mathbf{u} - \mathbf{u}_{\mathsf{SUPG}}\|_{\mathsf{SUPG}}^{2} + \|\mathbf{u}_{\mathsf{SUPG}} - \mathbf{u}_{\mathsf{AFC}}\|_{a}^{2}\right) \end{aligned}$$

¹ J.John: BAIL 2018 (135), 2020 ² John, Novo: CMAME (255), 289-305, 2013

AFC-SUPG Approach

Algebraic Flux Correction Schemes A Posteriori Error Analysis Conclusions and Outlook

- The initial solution for the nonlinear loop is the SUPG solution ¹
 - $\circ u_{AFC} := AFC$ solution
 - $u_{SUPG} := SUPG$ solution
- By triangle inequality

$$\begin{aligned} \|\boldsymbol{u} - \boldsymbol{u}_{\mathsf{AFC}}\|_{a}^{2} &\leq 2\left(\|\boldsymbol{u} - \boldsymbol{u}_{\mathsf{SUPG}}\|_{a}^{2} + \|\boldsymbol{u}_{\mathsf{SUPG}} - \boldsymbol{u}_{\mathsf{AFC}}\|_{a}^{2}\right) \\ &\leq 2\left(\|\boldsymbol{u} - \boldsymbol{u}_{\mathsf{SUPG}}\|_{\mathsf{SUPG}}^{2} + \|\boldsymbol{u}_{\mathsf{SUPG}} - \boldsymbol{u}_{\mathsf{AFC}}\|_{a}^{2}\right) \end{aligned}$$

• Using estimators from ²

 $\|\mathbf{u} - \mathbf{u}_{\mathsf{SUPG}}\|_{\mathsf{SUPG}}^2 \leq \eta_{\mathsf{SUPG}}^2$

¹J.John: BAIL 2018 (135), 2020

² John, Novo: CMAME (255), 289-305, 2013

Abhinav Jha

AFC-SUPG Approach

Algebraic Flux Correction Schemes A Posteriori Error Analysis Conclusions and Outlook

- The initial solution for the nonlinear loop is the SUPG solution ¹
 - $u_{AFC} := AFC$ solution
 - $u_{SUPG} := SUPG$ solution
- By triangle inequality

$$\begin{aligned} \|\boldsymbol{u} - \boldsymbol{u}_{\mathsf{AFC}}\|_{a}^{2} &\leq 2\left(\|\boldsymbol{u} - \boldsymbol{u}_{\mathsf{SUPG}}\|_{a}^{2} + \|\boldsymbol{u}_{\mathsf{SUPG}} - \boldsymbol{u}_{\mathsf{AFC}}\|_{a}^{2}\right) \\ &\leq 2\left(\|\boldsymbol{u} - \boldsymbol{u}_{\mathsf{SUPG}}\|_{\mathsf{SUPG}}^{2} + \|\boldsymbol{u}_{\mathsf{SUPG}} - \boldsymbol{u}_{\mathsf{AFC}}\|_{a}^{2}\right) \end{aligned}$$

• Using estimators from ²

$$\| \boldsymbol{u} - \boldsymbol{u}_{\mathsf{SUPG}} \|_{\mathsf{SUPG}}^2 \leq \eta_{\mathsf{SUPG}}^2$$

and denoting

$$\eta^2_{\mathsf{AFC}-\mathsf{SUPG}} := \| u_{\mathsf{SUPG}} - u_{\mathsf{AFC}} \|^2_a$$

 \Rightarrow

$$\|\mathbf{u} - \mathbf{u}_{h}\|_{a}^{2} \leq 2\left(\eta_{\mathsf{SUPG}}^{2} + \eta_{\mathsf{AFC-SUPG}}^{2}\right)$$

¹ J.John: BAIL 2018 (135), 2020

² John, Novo: CMAME (255), 289-305, 2013

Abhinav Jha

Algebraic Flux Correction Schemes A Posteriori Error Analysis Conclusions and Outlook

• Standard strategy for solving

$\textbf{SOLVE} \rightarrow \textbf{ESTIMATE} \rightarrow \textbf{MARK} \rightarrow \textbf{REFINE}$

• Effectivity index for the estimator

$$\eta_{\rm eff} = \frac{\eta}{\|\mathbf{u} - \mathbf{u}_h\|_a}$$

¹Kuzmin: in Proc. Int. Conf. Comput. Meth. for Coupled Problems in Science and Engineering, CIMNE, 2007

²Barrenechea, John, Knobloch: M3AS (27), 525-548, 2017

³Barrenechea, John, Knobloch: arXiv: 2204.07480, 2022

Algebraic Flux Correction Schemes A Posteriori Error Analysis Conclusions and Outlook

• Standard strategy for solving

$\textbf{SOLVE} \rightarrow \textbf{ESTIMATE} \rightarrow \textbf{MARK} \rightarrow \textbf{REFINE}$

• Effectivity index for the estimator

$$\eta_{\rm eff} = \frac{\eta}{\|\mathbf{u} - \mathbf{u}_h\|_a}$$

- Limiters
 - Monolithic upwind (MU) limiter¹
 - Linearity preservation (LP) limiter²³

¹Kuzmin: in Proc. Int. Conf. Comput. Meth. for Coupled Problems in Science and Engineering, CIMNE, 2007

²Barrenechea, John, Knobloch: M3AS (27), 525-548, 2017

³Barrenechea, John, Knobloch: arXiv: 2204.07480, 2022

- Comparison of results:
 - \circ On effectivity index (η_{eff})
 - Adaptive grid refinement
 - Behavior of η_{d_h}
 - Behavior of η_{SUPG} and $\eta_{\text{AFC-SUPG}}$
 - Smearing of internal layer¹

¹John, Knobloch: CMAME (197), 1997–2014, 2008

- Iterative solver for AFC schemes
 - Matrix formulation of the AFC schemes¹²

 $\mathsf{A}\mathsf{U} + (\mathsf{I} - \alpha)\,\mathsf{D}\mathsf{U} = \mathsf{F}$

• Fixed point right-hand side

$$(\mathsf{A} + \mathsf{D}) \, \mathsf{U}^{\nu+1} = \mathsf{F} + \omega \alpha \mathsf{D} \mathsf{U}^{\nu},$$

where $\omega > 0$ is a dynamic damping parameter

¹ J.John: BAIL 2018 (135), 2020

²J.,John: CAMWA (78), 3117-3138, 2019

Abhinav Jha

Algebraic Flux Correction Schemes A Posteriori Error Analysis Conclusions and Outlook

• $\Omega = (0,1)^2, \epsilon = 10^{-3}, \mathbf{b} = (2,1)^T, \mathbf{c} = 1 \text{ and } \mathbf{f} \text{ such that}$

$$\mathsf{u}(\mathsf{x},\mathsf{y}) = \mathsf{y}(1-\mathsf{y})\left(\mathsf{x} - \frac{e^{(\mathsf{x}-1)/\varepsilon} - e^{-1/\varepsilon}}{1 - e^{-1/\varepsilon}}\right)$$

- proposed in ¹
- \mathbb{P}_1 finite elements
- stop of the non linear iteration ²
 - \circ 25000 iterations
 - $\|\text{residual}\|_2 \leq \sqrt{\#\text{nDOFs}} 10^{-10}$

¹Allendes et. al. : SISC 39(5):A1903-A1927, 2017

²J.,John: CAMWA (78), 3117-3138, 2019

Abhinav Jha

Algebraic Flux Correction Schemes A Posteriori Error Analysis Conclusions and Outlook

• $\Omega = (0,1)^2, \epsilon = 10^{-3}, \mathbf{b} = (2,1)^T, \mathbf{c} = 1 \text{ and } \mathbf{f} \text{ such that}$

$$\mathsf{u}(\mathsf{x},\mathsf{y}) = \mathsf{y}(1-\mathsf{y})\left(\mathsf{x} - \frac{e^{(\mathsf{x}-1)/\varepsilon} - e^{-1/\varepsilon}}{1 - e^{-1/\varepsilon}}\right)$$

- proposed in ¹
- \mathbb{P}_1 finite elements
- stop of the non linear iteration ²
 - 25000 iterations
 - $\|\text{residual}\|_2 \leq \sqrt{\#\text{nDOFs}} 10^{-10}$
- stop of the adaptive algorithm
 - $\circ \eta \leq 10^{-3}$
 - $\circ \ \ \text{\#nDOFs} \approx 10^6$

¹Allendes et. al. : SISC 39(5):A1903-A1927, 2017

²J.,John: CAMWA (78), 3117-3138, 2019

Abhinav Jha

Algebraic Flux Correction Schemes A Posteriori Error Analysis Conclusions and Outlook

• Effectivity index

• Comparison of η_{SUPG} and $\eta_{\text{AFC}-\text{SUPG}}$

• Errors on adaptive grids

¹Barrenechea, John, Knobloch: SINUM (54), 2427-2451, 2016

Abhinav Jha

Algebraic Flux Correction Schemes A Posteriori Error Analysis Conclusions and Outlook

Figure 1: 14^{th} adaptively refined grid with residual estimator. MU limiter (#nDOFs = 22962) (left) and LP limiter (#nDOFs = 23572) (right)

Algebraic Flux Correction Schemes A Posteriori Error Analysis Conclusions and Outlook

- Example with interior and boundary layer¹
- $\Omega = (0,1)^2, \varepsilon = 10^{-4}, \mathbf{b} = (\cos(-\pi/3), \sin(-\pi/3))^{\mathsf{T}}, \mathbf{c} = \mathbf{f} = 0$

$$u_b = \begin{cases} 1 & (\mathbf{y} = 1 \land \mathbf{x} > 0) \text{ or } (\mathbf{x} = 0 \land \mathbf{y} > 0.7), \\ 0 & \text{else.} \end{cases}$$

¹Hughes, Mallet, Mizukami: CMAME, 54(3), 341-345, 1986

Algebraic Flux Correction Schemes A Posteriori Error Analysis Conclusions and Outlook

Figure 2: 14^{th} adaptively refined grid for MU limiter. Residual estimator (left) and AFC-SUPG estimator (right)

Algebraic Flux Correction Schemes A Posteriori Error Analysis Conclusions and Outlook

• Thickness of internal layer

Algebraic Flux Correction Schemes A Posteriori Error Analysis Conclusions and Outlook

- Conclusions¹
 - Effectivity index not robust with residual based approach
 - For the AFC-SUPG estimator, the effectivity index was better
 - Choice of limiter did not play a role in AFC-SUPG estimator

¹Jha: CAMWA, 97(1), 86-99, 2021

²J.,John: CAMWA (78), 3117-3138, 2019

Algebraic Flux Correction Schemes A Posteriori Error Analysis Conclusions and Outlook

- Conclusions¹
 - Effectivity index not robust with residual based approach
 - For the AFC-SUPG estimator, the effectivity index was better
 - Choice of limiter did not play a role in AFC-SUPG estimator
 - For the MU limiter with the residual estimator reduced order of convergence
 - η_{d_h} is the dominating term in η for MU limiter if problem becomes locally diffusion-dominated. For LP limiter dominating term in the convection-dominated situation
 - With adaptive grid refinement, problem could become locally diffusion-dominated. Then use LP limiter
 - For a small diffusion coefficient, use MU limiter because nonlinear problems difficult to solve with LP limiter²
 - Residual estimator approximates the internal layer better

Abhinav Jha

¹Jha: CAMWA, 97(1), 86-99, 2021

²J.,John: CAMWA (78), 3117-3138, 2019

Outlook

- Development of robust estimators
- Numerical studies in 3D
- Extending the analysis for the local efficiency of the estimator
- Interplay of hanging nodes and AFC schemes¹
- Comparison with Monolithic Convex Limiter²³

- ²Kuzmin: CMAME (361), 112804, 2020
- ³ J., Partl, Ahmed, Kuzmin: JNUM, 10.1515/jnma-2021-0123, 2022

Abhinav Jha

¹J.,John, Knobloch: arXiv : 2007.08405 , 2022