Adaptive Grids for Algebraic Stabilizations of Convection-Diffusion-Reaction Equations ### Abhinay Jha Applied and Computational Mathematics, RWTH Aachen University Workshop on Numerical Methods and Analysis in CFD 6th July 2022 Joint work with Volker John (WIAS, Berlin) and Petr Knobloch (Charles University, Prague) ## Outline - 1 Algebraic Stabilisation Schemes - 2 A Posteriori Error Analysis - 2.1 Residual Based Approach - 3 Adaptive Grids - 3.1 Implementation - 4 Numerical Studies - **5** Conclusions and Outlook • Steady-state convection-diffusion-reaction equation $$\begin{aligned} -\varepsilon \Delta u + \mathbf{b} \cdot \nabla u + c u &= f & \text{in } \Omega, \\ u &= u_b & \text{on } \Gamma_D, \\ -\varepsilon \nabla u \cdot \mathbf{n} &= g & \text{on } \Gamma_N \end{aligned}$$ - $\circ \ \Omega$ bounded polyhedral Lipschitz domain in $\mathbb{R}^d, d \in \{2,3\}$ - n outward pointing unit normal - Assume $$\left(c(\mathbf{x}) - \frac{1}{2}\nabla \cdot \mathbf{b}(\mathbf{x})\right) \ge \sigma > 0$$ - Interested in convection-dominated regime, $\varepsilon \ll \|\mathbf{b}\|_{L^{\infty}(\Omega)} \mathbf{L}$ - L Characteristic length of the problem - Ideal discretization - 1. Accurate and sharp layers - Ideal discretization - 1. Accurate and sharp layers - 2. Physically consistent results (no spurious oscillations) - Ideal discretization - 1. Accurate and sharp layers - 2. Physically consistent results (no spurious oscillations) - 3. Efficient computation of the solutions - Ideal discretization - 1. Accurate and sharp layers - 2. Physically consistent results (no spurious oscillations) - 3. Efficient computation of the solutions - Because of 2nd property: Algebraic stabilised schemes very well suited for applications - Ideal discretization - 1. Accurate and sharp layers - 2. Physically consistent results (no spurious oscillations) - 3. Efficient computation of the solutions - Because of 2nd property: Algebraic stabilised schemes very well suited for applications - Alternate approach: Adaptive grids - Ideal discretization - 1. Accurate and sharp layers - 2. Physically consistent results (no spurious oscillations) - 3. Efficient computation of the solutions - Because of 2nd property: Algebraic stabilised schemes very well suited for applications - Alternate approach: Adaptive grids - Idea: Combine both the approaches Algebraic Stabilisation Schemes A Posteriori Error Analysis Adaptive Grids Numerical Studies Conclusions and Outlook - Derivation - Galerkin FEM (Algebraic form) $$\sum_{j=1}^{N} a_{ij} u_j = f_i, \quad i = 1, \dots, M,$$ $$u_i = u_i^b, \quad i = M+1, \dots, N$$ Artificial diffusion matrix D $$\mathbf{d}_{ij} = \mathbf{d}_{ji} = -\max\{a_{ij}, 0, a_{ji}\} \ \forall \ i \neq j, \quad \mathbf{d}_{ii} = -\sum_{i \neq i} \mathbf{d}_{ij}$$ Anti-diffusive fluxes $$f_{ij} = d_{ij}(u_j - u_i), \quad f_{ij} = -f_{jj}, \quad i, j = 1, \dots, N$$ - Derivation (cont.) - Solution-dependent coefficients $$\alpha_{ij} = \alpha_{ji}, \quad i, j = 1, \dots, N$$ with $$\alpha_{ij} \in [0,1]$$ Final scheme $$\begin{split} \sum_{j=1}^N a_{ij} u_j + \sum_{j=1}^N (1-\alpha_{ij}) \boldsymbol{d}_{ij} (u_j - u_i) &= f_i, \quad i = 1, \dots, M, \\ u_i &= u_i^b, \quad i = M+1, \dots, N \end{split}$$ • Variational problem for AFC scheme Find $u_h \in V_h$ such that $$a_h(u_h, v_h) + d_h(u_h; u_h, v_h) = \langle f, v_h \rangle \quad \forall \ v_h \in V_h$$ - ∘ V_h finite element space with homogeneous Dirichlet boundary conditions (V_h ⊂ V) - stabilization $$d_{h}(\mathbf{w};\mathbf{z},\mathbf{v}) = \sum_{i,i=1}^{N} (1 - \alpha_{ij}(\mathbf{w})) d_{ij}(\mathbf{z}_{j} - \mathbf{z}_{i}) \mathbf{v}_{i} \quad \forall \ \mathbf{w}, \mathbf{v}, \mathbf{z} \in \mathbf{V}_{h}$$ Barrenechea, John, Knobloch, Rankin: SeMA Journal (75), 655-685, 2018 • Variational problem for AFC scheme Find $u_h \in V_h$ such that $$a_h(u_h, v_h) + d_h(u_h; u_h, v_h) = \langle f, v_h \rangle \quad \forall \ v_h \in V_h$$ - ∘ V_h finite element space with homogeneous Dirichlet boundary conditions (V_h ⊂ V) - stabilization $$d_{h}(w;z,v) = \sum_{i,j=1}^{N} (1 - \alpha_{ij}(w))d_{ij}(z_{j} - z_{i})v_{i} \quad \forall w, v, z \in V_{h}$$ • Another representation of stabilization for $w, v, z \in V_h$, 1 $$d_{h}(w; z, v) = \sum_{E \in \mathcal{E}_{h}} (1 - \alpha_{E}(w)) d_{E} h_{E} (\nabla z \cdot \mathbf{t}_{E}, \nabla v \cdot \mathbf{t}_{E})$$ Barrenechea, John, Knobloch, Rankin: SeMA Journal (75), 655-685, 2018 AFC norm $$\|u_h\|_{\mathsf{AFC}}^2 = \|u_h\|_a^2 + d_h(u_h, u_h, u_h) \quad \forall u_h \in V_h$$ $$\circ \text{ where } \|\mathbf{u}_h\|_a^2 = \varepsilon |\mathbf{u}_h|_1^2 + \sigma \|\mathbf{u}_h\|_0^2$$ ¹ John, Novo: CMAME (255), 289-305, 2013 AFC norm $$\|u_h\|_{AFC}^2 = \|u_h\|_a^2 + d_h(u_h, u_h, u_h) \quad \forall u_h \in V_h$$ - where $||u_h||_a^2 = \varepsilon |u_h|_1^2 + \sigma ||u_h||_0^2$ - Let I_hu denote the Scott-Zhang interpolation operator. Galerkin orthogonality arguments $$\|u - u_h\|_{\mathsf{AFC}}^2 = \langle f, u - I_h u \rangle + \langle g, u - I_h u \rangle_{\Gamma_N} - a_h(u_h, u - I_h u) + d_h(u_h; u, I_h u - u_h)$$ ¹ John. Novo: CMAME (255), 289-305, 2013 AFC norm $$\|u_h\|_{AFC}^2 = \|u_h\|_a^2 + d_h(u_h, u_h, u_h) \quad \forall u_h \in V_h$$ - where $||u_h||_a^2 = \varepsilon |u_h|_1^2 + \sigma ||u_h||_0^2$ - Let I_hu denote the Scott-Zhang interpolation operator. Galerkin orthogonality arguments $$\|u - u_h\|_{\mathsf{AFC}}^2 = \langle f, u - I_h u \rangle + \langle g, u - I_h u \rangle_{\Gamma_N} - a_h(u_h, u - I_h u) + d_h(u_h; u, I_h u - u_h)$$ Standard residual a posteriori error bound ¹ $$\begin{split} \langle f, u - I_h u \rangle + \langle g, u - I_h u \rangle_{\Gamma_N} - a_h(u_h, u - I_h u) \\ &= \sum_{K \in \mathcal{T}_h} (R_K(u_h), u - I_h u)_K + \sum_{F \in \mathcal{F}_h} \langle R_F(u_h), u - I_h u \rangle_F \end{split}$$ ¹ John Novo: CMAME (255), 289–305, 2013 with $$\begin{array}{ll} R_K(u_h) & := & f + \varepsilon \Delta u_h - \boldsymbol{b} \cdot \nabla u_h - c u_h|_K, \\ \\ R_F(u_h) & := & \begin{cases} -\varepsilon [|\nabla u_h \cdot \boldsymbol{n}_F|]_F & \text{if } F \in \mathcal{F}_{h,\Omega}, \\ g - \varepsilon (\nabla u_h \cdot \boldsymbol{n}_F) & \text{if } F \in \mathcal{F}_{h,N}, \\ 0 & \text{if } F \in \mathcal{F}_{h,D} \end{cases} \end{array}$$ $$\begin{array}{ll} R_K(u_h) & := & f + \varepsilon \Delta u_h - \mathbf{b} \cdot \nabla u_h - c u_h|_K, \\ R_F(u_h) & := & \begin{cases} & -\varepsilon [|\nabla u_h \cdot \mathbf{n}_F|]_F & \text{if } F \in \mathcal{F}_{h,\Omega}, \\ & g - \varepsilon (\nabla u_h \cdot \mathbf{n}_F) & \text{if } F \in \mathcal{F}_{h,N}, \\ & 0 & \text{if } F \in \mathcal{F}_{h,D} \end{cases} \end{array}$$ Using interpolation estimates, Cauchy-Schwarz, and Young's inequality $$\begin{split} \|u-u_h\|_a^2 &+ \frac{C_Y}{C_Y-1} d_h(u_h; u-u_h, u-u_h) \\ &\leq \quad \frac{C_Y^2}{2(C_Y-1)} \sum_{K \in \mathcal{T}_h} \min \left\{ \frac{C_I^2}{\sigma}, \, \frac{C_I^2 h_K^2}{\varepsilon} \right\} \|R_K(u_h)\|_{L^2(K)}^2 \\ &+ \frac{C_Y^2}{2(C_Y-1)} \sum_{F \in \mathcal{F}_h} \min \left\{ \frac{C_F^2 h_F}{\varepsilon}, \frac{C_F^2}{\sigma^{1/2} \varepsilon^{1/2}} \right\} \|R_F(u_h)\|_{L^2(F)}^2 \\ &+ \frac{C_Y}{C_Y-1} d_h(u_h; u, I_h u - u_h) \end{split}$$ • Linearity of $d_h(\cdot;\cdot,\cdot)$, $$d_h(u_h; u, I_h u - u_h) = d_h(u_h; u - u_h, I_h u - u_h) + d_h(u_h; u_h, I_h u - u_h)$$ $$d_h(u_h;u,I_hu-u_h)=d_h(u_h;u-u_h,I_hu-u_h)+d_h(u_h;u_h,I_hu-u_h)$$ Using interpolation estimates, Cauchy-Schwarz, trace inequality, inverse estimate, and Young's inequality $$\begin{aligned} d_h(u_h; u_h, I_h u - u_h) & \leq & \frac{C_Y}{2} \sum_{E \in \mathcal{E}_h} \min \left\{ \frac{\kappa_1 h_E^2}{\varepsilon}, \frac{\kappa_2}{\sigma} \right\} (1 - \alpha_E)^2 |d_E|^2 h_E^{1-d} \\ & \times \|\nabla u_h \cdot \mathbf{t}_E\|_{L^2(E)}^2 + \frac{1}{C_Y} \|u - u_h\|_a^2, \end{aligned}$$ where $$\begin{array}{lcl} \kappa_1 & = & C_{\rm edge,max} \left(1 + (1 + C_{\rm I})^2 \right), \\ \kappa_2 & = & C_{\rm inv}^2 C_{\rm edge,max} \left(1 + (1 + C_{\rm I})^2 \right). \end{array}$$ # Theorem (Global a posteriori error estimate) A global a posteriori error estimate for the energy norm is given by 1 $$\|u - u_h\|_a^2 \le \eta_1^2 + \eta_2^2 + \eta_3^2,$$ where $$\begin{split} \eta_1^2 &= \sum_{\mathbf{K} \in \mathcal{T}_h} \min \left\{ \frac{4C_{\mathbf{I}}^2}{\sigma}, \, \frac{4C_{\mathbf{I}}^2 h_{\mathbf{K}}^2}{\varepsilon} \right\} \| \mathbf{R}_{\mathbf{K}}(\mathbf{u}_h) \|_{\mathbf{L}^2(\mathbf{K})}^2, \\ \eta_2^2 &= \sum_{\mathbf{F} \in \mathcal{F}_h} \min \left\{ \frac{4C_{\mathbf{F}}^2 h_{\mathbf{F}}}{\varepsilon}, \frac{4C_{\mathbf{F}}^2}{\sigma^{1/2} \varepsilon^{1/2}} \right\} \| \mathbf{R}_{\mathbf{F}}(\mathbf{u}_h) \|_{\mathbf{L}^2(\mathbf{F})}^2, \\ \eta_3^2 &= \sum_{\mathbf{E} \in \mathcal{E}_h} \min \left\{ \frac{4\kappa_1 h_{\mathbf{E}}^2}{\varepsilon}, \frac{4\kappa_2}{\sigma} \right\} (1 - \alpha_{\mathbf{E}})^2 |\mathbf{d}_{\mathbf{E}}|^2 h_{\mathbf{E}}^{1-d} \| \nabla \mathbf{u}_h \cdot \mathbf{t}_{\mathbf{E}} \|_{\mathbf{L}^2(\mathbf{E})}^2 \end{split}$$ ¹J.: CAMWA, 97(1), 86-99, 2021 • Standard strategy for solving $SOLVE \rightarrow ESTIMATE \rightarrow MARK \rightarrow REFINE$ ¹Xu, Zikatanov: MC, 68(228), 1429–1446, 1999 Standard strategy for solving $$SOLVE \rightarrow ESTIMATE \rightarrow MARK \rightarrow REFINE$$ - Hanging nodes - Preserves angles after red-refinement - Avoids prism and pyramids in 3D mesh refinement - hp adaptive refinement - Certain stabilized schemes rely on the property of triangulation ¹ ¹Xu, Zikatanov: MC, 68(228), 1429–1446, 1999 $$v(q) = \sum_{p \in N_{\mathbf{F}}(\mathcal{T}) \setminus \mathbf{H}(\mathcal{T})} a_{qp} v(p)$$ ¹Gräser : PhD Thesis, FU Berlin 2011 ²J.: PhD Thesis. FU Berlin 2020 ### Lemma Let \mathcal{T} be a non-conforming triangulation of Ω , i.e., \mathcal{T} has hanging nodes. Then, for all $q \in H(\mathcal{T})$ there are coefficients a_{ap} with $p \in N_F(\mathcal{T}) \setminus H(\mathcal{T})$ such that all $v \in V_h$ can be represented as 12 $$v(q) = \sum_{p \in N_{\mathbf{F}}(\mathcal{T}) \backslash \mathbf{H}(\mathcal{T})} a_{qp} v(p)$$ ### Theorem Let $\{\mathcal{T}_0,\cdots,\mathcal{T}_i\}$ be a grid hierarchy on Ω with \mathcal{T}_0 being conforming. Let us denote $\mathcal{T}=\mathcal{T}_i$, i.e., the final refinement level. Then a basis of V_h is given by 1 $$B(\mathcal{T}) := \left\{ \varphi_p = \varphi_p^{\mathsf{nc}} + \sum_{q \in \mathbf{H}(\mathcal{T})} a_{qp} \varphi_q^{\mathsf{nc}} : p \in \mathsf{N}_{\mathsf{F}}(\mathcal{T}) \setminus \mathbf{H}(\mathcal{T}) \right\}$$ ¹Gräser: PhD Thesis, FU Berlin 2011 ²J.: PhD Thesis. FU Berlin 2020 - Satisfaction of DMP - DMP is satisfied if¹ $$a_{ii} > 0,$$ $$a_{ij} + a_{ji} \leq 0,$$ where a_{ii} is in the stiffness matrix ¹Barrenechea, John, Knobloch: SINUM (54), 2427-2451, 2016 ### Initial assembly $$\begin{pmatrix} a_{00} & a_{01} & a_{02} & a_{03} & a_{04} \\ a_{10} & a_{11} & a_{12} & a_{13} & a_{14} \\ a_{20} & a_{21} & a_{22} & a_{23} & a_{24} \\ a_{30} & a_{31} & a_{32} & a_{33} & a_{34} \\ a_{40} & a_{41} & a_{42} & a_{43} & a_{44} \end{pmatrix}, \quad \begin{pmatrix} b_0 \\ b_1 \\ b_2 \\ b_3 \\ b_4 \end{pmatrix}$$ $$\begin{pmatrix} a_{00} & a_{01} & a_{02} & a_{03} & a_{04} \\ a_{10} & a_{11} & a_{12} & a_{13} & a_{14} \\ a_{20} & a_{21} & a_{22} & a_{23} & a_{24} \\ a_{30} & a_{31} & a_{32} & a_{33} & a_{34} \\ a_{40} & a_{41} & a_{42} & a_{43} & a_{44} \end{pmatrix}, \begin{pmatrix} b_0 \\ b_1 \\ b_2 \\ b_3 \\ b_4 \end{pmatrix}$$ Conforming test space and continuity of the hanging node $$\begin{pmatrix} 1 & -\frac{1}{2} & 0 & -\frac{1}{2} & 0 \\ a_{10} + \frac{a_{00}}{2} & a_{11} + \frac{a_{01}}{2} & a_{12} + \frac{a_{02}}{2} & a_{13} + \frac{a_{03}}{2} & a_{14} + \frac{a_{04}}{2} \\ a_{20} & a_{21} & a_{22} & a_{23} & a_{24} \\ a_{30} + \frac{a_{00}}{2} & a_{31} + \frac{a_{01}}{2} & a_{32} + \frac{a_{02}}{2} & a_{33} + \frac{a_{03}}{2} & a_{34} + \frac{a_{04}}{2} \\ a_{40} & a_{41} & a_{42} & a_{43} & a_{44} \end{pmatrix}, \begin{pmatrix} 0 \\ b_1 + \frac{b_0}{2} \\ b_2 \\ b_3 + \frac{b_0}{2} \\ b_4 \end{pmatrix}$$ $$\begin{pmatrix} 1 & -\frac{1}{2} & 0 & -\frac{1}{2} & 0 \\ 0 & a_{11} + \frac{a_{01}}{2} + \frac{a_{10}}{2} + \frac{a_{00}}{4} & a_{12} + \frac{a_{02}}{2} & a_{13} + \frac{a_{03}}{2} + \frac{a_{10}}{2} + \frac{a_{00}}{4} & a_{14} + \frac{a_{04}}{2} \\ 0 & a_{21} + \frac{a_{20}}{2} & a_{22} & a_{23} + \frac{a_{20}}{2} & a_{24} \\ 0 & a_{31} + \frac{a_{01}}{2} + \frac{a_{30}}{2} + \frac{a_{00}}{4} & a_{32} + \frac{a_{02}}{2} & a_{33} + \frac{a_{03}}{2} + \frac{a_{30}}{2} + \frac{a_{00}}{4} & a_{34} + \frac{a_{04}}{2} \\ 0 & a_{41} + \frac{a_{40}}{2} & a_{42} & a_{43} + \frac{a_{40}}{2} & a_{44} \end{pmatrix}$$ ### Conforming ansatz space $$\begin{pmatrix} 1 & -\frac{1}{2} & 0 & -\frac{1}{2} & 0 \\ 0 & a_{11} + \frac{a_{01}}{2} + \frac{a_{10}}{2} + \frac{a_{00}}{4} & a_{12} + \frac{a_{02}}{2} & a_{13} + \frac{a_{03}}{2} + \frac{a_{10}}{2} + \frac{a_{00}}{4} & a_{14} + \frac{a_{04}}{2} \\ 0 & a_{21} + \frac{a_{20}}{2} & a_{22} & a_{23} + \frac{a_{20}}{2} & a_{24} \\ 0 & a_{31} + \frac{a_{01}}{2} + \frac{a_{30}}{2} + \frac{a_{00}}{4} & a_{32} + \frac{a_{02}}{2} & a_{33} + \frac{a_{03}}{2} + \frac{a_{30}}{2} + \frac{a_{00}}{4} & a_{34} + \frac{a_{04}}{2} \\ 0 & a_{41} + \frac{a_{40}}{2} & a_{42} & a_{43} + \frac{a_{40}}{2} & a_{44} \end{pmatrix}$$ Increases the matrix stencil by few elements - Algebraic stabilisation schemes - Algebraic Flux Correction (AFC) schemes - Kuzmin limiter¹ - BJK limiter²³ $^{^{1}}$ Kuzmin: in Proc. Int. Conf. Comput. Meth. for Coupled Problems in Science and Engineering, CIMNE, 2007 ²Barrenechea, John, Knobloch: M3AS (27), 525–548, 2017 ³Barrenechea, John, Knobloch: arXiv: 2204.07480, 2022 John, Knobloch: arXiv: 2111.08697, 2021 - Algebraic stabilisation schemes - Algebraic Flux Correction (AFC) schemes - Kuzmin limiter¹ - BJK limiter²³ - o Monotone Upwind-type Algebraically Stabilized (MUAS) method⁴ - o Drops symmetric condition on α_{ij} - AFC system is modified $$(A + D) U = F + (D - B) U,$$ where $$b_{ij} = \max\left\{ \left(1 - \overline{\alpha_{ij}}(\mathbf{u})\right) a_{ij}, 0, \left(1 - \overline{\alpha_{ji}}(\mathbf{u})\right) a_{ji} \right\}$$ ¹Kuzmin: in Proc. Int. Conf. Comput. Meth. for Coupled Problems in Science and Engineering, CIMNE, 2007 ²Barrenechea, John, Knobloch: M3AS (27), 525–548, 2017 ³Barrenechea, John, Knobloch: arXiv: 2204.07480, 2022 ⁴John, Knobloch: arXiv: 2111.08697, 2021 Algebraic Stabilisation Schemes A Posteriori Error Analysis Adaptive Grids Numerical Studies Conclusions and Outlook - Comparison of results: - Accuracy of solution - $\|\cdot\|_{L^2(\Omega)}$ - $-\|\nabla(\cdot)\|_{\mathsf{L}^2(\Omega)}$ ¹Augustin, Caiazzo, Fiebach, Fuhrmann, John, Linke, Umla : CMAME (200), 3395 - 3409, 2011 - Comparison of results: - Accuracy of solution - $\|\cdot\|_{\mathsf{L}^2(\Omega)}$ - $-\|\nabla(\cdot)\|_{L^2(\Omega)}$ - Efficiency of the scheme Augustin, Caiazzo, Fiebach, Fuhrmann, John, Linke, Umla : CMAME (200), 3395 - 3409, 2011 ### Comparison of results: - Accuracy of solution - $\|\cdot\|_{\mathsf{L}^2(\Omega)}$ - $\|\nabla(\cdot)\|_{L^2(\Omega)}$ - Efficiency of the scheme - Global satisfaction of DMP $$\operatorname{osc}_{\max}(\mathbf{u_h}) := \max_{(\mathbf{x}, \mathbf{y}) \in \overline{\Omega}} \mathbf{u_h}(\mathbf{x}, \mathbf{y}) - 1 - \min_{(\mathbf{x}, \mathbf{y}) \in \overline{\Omega}} \mathbf{u_h}(\mathbf{x}, \mathbf{y})$$ Augustin, Caiazzo, Fiebach, Fuhrmann, John, Linke, Umla : CMAME (200), 3395 - 3409, 2011 ## Comparison of results: - Accuracy of solution - $\|\cdot\|_{\mathsf{L}^2(\Omega)}$ - $\|\nabla(\cdot)\|_{L^2(\Omega)}$ - Efficiency of the scheme - Global satisfaction of DMP $$\operatorname{osc}_{\max}(u_h) := \max_{(x,y) \in \overline{\Omega}} u_h(x,y) - 1 - \min_{(x,y) \in \overline{\Omega}} u_h(x,y)$$ Smearing of internal layer¹ Augustin, Caiazzo, Fiebach, Fuhrmann, John, Linke, Umla : CMAME (200), 3395 - 3409, 2011 - Accuracy of solution - $\|\cdot\|_{\mathsf{L}^2(\Omega)}$ - $\|\nabla(\cdot)\|_{L^2(\Omega)}$ - Efficiency of the scheme - Global satisfaction of DMP $$\operatorname{osc}_{\max}(u_h) := \max_{(x,y) \in \overline{\Omega}} u_h(x,y) - 1 - \min_{(x,y) \in \overline{\Omega}} u_h(x,y)$$ - Smearing of internal layer¹ - Adaptive grids Augustin, Caiazzo, Fiebach, Fuhrmann, John, Linke, Umla : CMAME (200), 3395 - 3409, 2011 - Comparison of results: - Accuracy of solution - $\|\cdot\|_{\mathsf{L}^2(\Omega)}$ - $\|\nabla(\cdot)\|_{L^2(\Omega)}$ Efficiency of the scheme - Global satisfaction of DMP $$\operatorname{osc_{max}}(u_h) := \max_{(x,y) \in \overline{\Omega}} u_h(x,y) - 1 - \min_{(x,y) \in \overline{\Omega}} u_h(x,y)$$ - Smearing of internal layer¹ - Adaptive grids - Conforming closure - Hanging nodes Augustin, Caiazzo, Fiebach, Fuhrmann, John, Linke, Umla : CMAME (200), 3395 - 3409, 2011 - Comparison of results: - Accuracy of solution - $\|\cdot\|_{\mathsf{L}^2(\Omega)}$ - $\|\nabla(\cdot)\|_{L^{2}(\Omega)}$ - Efficiency of the scheme - Global satisfaction of DMP $$\operatorname{osc}_{\max}(u_h) := \max_{(x,y) \in \overline{\Omega}} u_h(x,y) - 1 - \min_{(x,y) \in \overline{\Omega}} u_h(x,y)$$ - Smearing of internal layer¹ - Adaptive grids - Conforming closure - Hanging nodes - For MUAS method neglect η₃ Augustin, Caiazzo, Fiebach, Fuhrmann, John, Linke, Umla : CMAME (200), 3395 - 3409, 2011 ### Iterative solver Matrix formulation of the algebraic stabilised schemes¹² $$(A+D) U = F + (D - B(U)) U$$ Fixed point right-hand side $$(A + D) \tilde{U}^{\mu} = F + (D - B(U^{\mu})) U^{\mu},$$ $U^{\mu+1} = \omega \tilde{U}^{\mu} + (1 - \omega) U^{\mu},$ where $\omega > 0$ is a dynamic damping parameter ¹ J.John: BAIL 2018 (135), 2020 ²J.,John: CAMWA (78), 3117-3138, 2019 - Example with corner boundary layer¹ - $\Omega = (0,1)^2$, $\varepsilon = 10^{-2}$, $\mathbf{b} = (2,3)^T$, c = 1, $u_b = 0$, g = 0, and f such that $$\mathsf{u}(\mathsf{x},\mathsf{y}) = \mathsf{x}\mathsf{y}^2 - \mathsf{y}^2 \exp\left(\frac{2(\mathsf{x}-1)}{\varepsilon}\right) - \mathsf{x} \exp\left(\frac{3(\mathsf{y}-1)}{\varepsilon}\right) + \exp\left(\frac{2(\mathsf{x}-1) + 3(\mathsf{y}-1)}{\varepsilon}\right)$$ - stop of the non linear iteration 2 - 10000 iterations - $\|\text{residual}\|_{2} < \sqrt{\text{#dof}}10^{-10}$ Adaptive Grids for Algebraic Stabilization, 6th July 2022 ¹John, Knobloch, Savescu: CMAME (200), 2916–2929, 2011 ² J. John: CAMWA (78), 3117-3138, 2019 - Example with corner boundary layer¹ - $\Omega = (0,1)^2$, $\varepsilon = 10^{-2}$, $\mathbf{b} = (2,3)^T$, c = 1, $u_b = 0$, g = 0, and f such that $$\mathsf{u}(\mathsf{x},\mathsf{y}) = \mathsf{x}\mathsf{y}^2 - \mathsf{y}^2 \exp\left(\frac{2(\mathsf{x}-1)}{\varepsilon}\right) - \mathsf{x} \exp\left(\frac{3(\mathsf{y}-1)}{\varepsilon}\right) + \exp\left(\frac{2(\mathsf{x}-1) + 3(\mathsf{y}-1)}{\varepsilon}\right)$$ - stop of the non linear iteration 2 - 10000 iterations - \circ ||residual||₂ < $\sqrt{\text{#dof}}10^{-10}$ - stop of the adaptive algorithm - $0 \eta < 10^{-3}$ - \circ #dof $\approx 10^6$ ¹John, Knobloch, Savescu: CMAME (200), 2916–2929, 2011 ²J.,John: CAMWA (78), 3117-3138, 2019 #### Algebraic Stabilisation Schemes A Posteriori Error Analysis Adaptive Grids Numerical Studies Conclusions and Outlook ## • $L^2(\Omega)$ Error # • $L^2(\Omega)$ Error of the gradient - Hemker problem¹ - $\varepsilon = 10^{-4}, \mathbf{b} = (1,0)^{\mathsf{T}}, \mathbf{c} = \mathbf{f} = 0$ - stop of the non linear iteration - o 10000 iterations - $\circ \| \operatorname{residual} \|_2 \le \sqrt{\text{#dof}} 10^{-8}$ ¹Hemker: JCAM 76, 277-285, 1996 - Hemker problem¹ - $\varepsilon = 10^{-4}$, $\mathbf{b} = (1,0)^{\mathsf{T}}$, c = f = 0 - stop of the non linear iteration - o 10000 iterations - $\circ \| \operatorname{residual} \|_2 \le \sqrt{\text{\#dof}} 10^{-8}$ - stop of the adaptive algorithm - $0 \quad \eta \leq 10^{-3}$ - \circ #dof $\approx 5 \times 10^5$ ¹Hemker: JCAM 76, 277-285, 1996 ### Satisfaction of Global DMP # • Smearing of internal layer Figure 1: Adaptively refined conforming grids with $\approx 25,000$ #dof, AFC method and Kuzmin limiter (left), MUAS method (right) - Accuracy of solution - AFC + BJK limiter and MUAS method converge on all grids - AFC + Kuzmin limiter does not converge on adaptively refined grids if solution becomes (locally) diffusion-dominated ¹J.,John, Knobloch: arXiv : 2007.08405 , 2022 ²J.,John: CAMWA (78), 3117-3138, 2019 - Accuracy of solution - AFC + BJK limiter and MUAS method converge on all grids - AFC + Kuzmin limiter does not converge on adaptively refined grids if solution becomes (locally) diffusion-dominated - Efficiency - AFC+ Kuzmin limiter and the MUAS method² most efficient ¹ J., John, Knobloch: arXiv: 2007.08405, 2022 ²J.,John: CAMWA (78), 3117-3138, 2019 - Accuracy of solution - AFC + BJK limiter and MUAS method converge on all grids - AFC + Kuzmin limiter does not converge on adaptively refined grids if solution becomes (locally) diffusion-dominated - Efficiency - AFC+ Kuzmin limiter and the MUAS method² most efficient - Satisfaction of DMP - Global DMP satisfied on grids with hanging nodes - AFC+ Kuzmin limiter did not satisfy on conformally closed grids ¹J.,John, Knobloch: arXiv: 2007.08405, 2022 ² J., John: CAMWA (78), 3117-3138, 2019 - Accuracy of solution - AFC + BJK limiter and MUAS method converge on all grids - AFC + Kuzmin limiter does not converge on adaptively refined grids if solution becomes (locally) diffusion-dominated - Efficiency - AFC+ Kuzmin limiter and the MUAS method² most efficient - Satisfaction of DMP - Global DMP satisfied on grids with hanging nodes - AFC+ Kuzmin limiter did not satisfy on conformally closed grids - Smearing - AFC + BJK limiter sharpest layer - For fine grids, all values close to reference value J., John, Knobloch: arXiv: 2007.08405, 2022 ² J..John: CAMWA (78), 3117-3138, 2019 - Accuracy of solution - AFC + BJK limiter and MUAS method converge on all grids - AFC + Kuzmin limiter does not converge on adaptively refined grids if solution becomes (locally) diffusion-dominated - Efficiency - AFC+ Kuzmin limiter and the MUAS method² most efficient - Satisfaction of DMP - Global DMP satisfied on grids with hanging nodes - AFC+ Kuzmin limiter did not satisfy on conformally closed grids - Smearing - AFC + BJK limiter sharpest layer - For fine grids, all values close to reference value - MUAS method most promising ¹ J., John, Knobloch: arXiv: 2007.08405, 2022 ²J.,John: CAMWA (78), 3117-3138, 2019 #### Outlook - Development of estimators for MUAS method - Numerical studies in 3D - Comparison with Monolithic Convex Limiter¹² ¹Kuzmin: CMAME (361), 112804, 2020 ² J., Partl, Ahmed, Kuzmin: JNUM, 10.1515/jnma-2021-0123, 2022