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Algebraic Stabilisation Schemes

Algebraic Stabilisation Schemes

e Steady-state convection-diffusion-reaction equation

—cAu+b-Vu+cu = f inQ,
u

up, onlIp,
—eVu-n = g only

o]

Q - bounded polyhedral Lipschitz domain in RY, d € {2, 3}
n - outward pointing unit normal
Assume

o

(o]

(c(x) - %v - b(x)) >0>0

Interested in convection-dominated regime, ¢ < ||b|| ()L
L - Characteristic length of the problem

(0]

@]
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Algebraic Stabilisation Schemes

Ideal discretization

1. Accurate and sharp layers
2. Physically consistent results (no spurious oscillations)

3. Efficient computation of the solutions

Because of 2" property: Algebraic stabilised schemes very well suited
for applications

Alternate approach: Adaptive grids

e |dea: Combine both the approaches
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Algebraic Stabilisation Schemes

e Derivation
o Galerkin FEM (Algebraic form)

N
dau = fi, i=1,...,M,
j=1
u = ub’ i:M+1,...,N
o Artificial diffusion matrix D

dj = dj = —max{ay, 0,a;} Vi #j, dij=— dj
i#

o Anti-diffusive fluxes

fj = dj(u; —up), fj=—f, ©Lj=1,...,N
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Algebraic Stabilisation Schemes

e Derivation (cont.)
o Solution-dependent coefficients

Qjj = Qjj, I,]Zl,...,N

with
ajj € [0,1]

o Final scheme

Za,,u,+z —ap)di(u—u) = fi, i=1,...,M,

u = ub, i=M+1....,N
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A Posteriori Analysis

A Posteriori Error Analysis

° for AFC scheme
Find u;, € V), such that
an(Up, Vp) + dp(Up; up,vp) = (f,vp) V vy €V

o V,— finite element space with homogeneous Dirichlet
boundary conditions (V}, C V)
o stabilization

1Balrlrenechea, John, Knobloch, Rankin: SeMA Journal (75), 655-685, 2018
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A Posteriori Analysis

A Posteriori Error Analysis

° for AFC scheme
Find u, € V}, such that

ap(Up, Vh) + dp(Up; Up, vh) = (f,vh) Y vy €V

o V,— finite element space with homogeneous Dirichlet
boundary conditions (V}, C V)
o stabilization
N
dn(w;z,v) = > (1 — a(w)dy(z — z))vi Vw,v,z €V,
ij=1

e Another representation of stabilization for w,v,z € V},,!

dn(w;z,v) = Z(l — ag(w))dghg (Vz - tg, Vv - tE)
Ecé&,

1Balrlrenechea, John, Knobloch, Rankin: SeMA Journal (75), 655-685, 2018
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A Posteriori Error Analysis

e AFC norm
lunllzec = ||UnllZ + dn(un, un, up) Yup € Vi

o where |luy||Z = e|up|? + ol|unl3

1 John, Novo: CMAME (255), 289305, 2013
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A Posteriori Error Analysis

e AFC norm
lunllzec = ||UnllZ + dn(un, un, up) Yup € Vi
o where [[uy |7 = elun|T + oflunll3

e Let I u denote the Scott-Zhang interpolation operator. Galerkin
orthogonality arguments

Ju—unllzee = (f,u—Ipu) + (g, u— Ipu)r, — ap(up, u — lhu)
+dp(Up; u, lhu — up)

1 John, Novo: CMAME (255), 289305, 2013
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A Posteriori Error Analysis
e AFC norm
lunllarc = llUnllz + dn(Un, Un, up) Vu, € Vi
o where |[un[|g = elup|T + o||unl[3

e Let I u denote the Scott-Zhang interpolation operator. Galerkin
orthogonality arguments

Ju—unllzee = (f,u—Ipu) + (g, u— Ipu)r, — ap(up, u — lhu)
+dp(Up; u, lhu — up)

e Standard residual a posteriori error bound !

(f,u — Ipu) + (g, u — lpu)r, — ap(up, u — lhu)

= Z(RK(Uh),U — IhU)K-l-

KeTh

1 John, Novo: CMAME (255), 289305, 2013
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A Posteriori Error Analysis

with
RK(Uh) = f4+eAu,—b-Vu, 7CUh‘K,
—EHVUh . nFHp if Fe .7:}1,(2,
= g — E(Vuh . np) if Fe }—h,N.,
0 if Fe Fup
| Abhinav Jha
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A Posteriori Error Analysis
with
RK(uh) = f4+eAu,—b-Vu, 7CUh‘K,
—¢[|Vun - nelle ifF € Fha,
g — E(Vuh . np) if Fe }—h,N~,
0 if Fe Fnp

e Using interpolation estimates, Cauchy-Schwarz, and Young's inequality

C
lu— unllz + c L 76 (Un; U — Un, U — Un)
(&7 [ G CPhg >
m; min {77 ?} HRK(Uh)HLZ(K>
h
C2
4
2(Cy — 1)
Cy
cu, lhu —
+CY71dh<uh u, lhu — up)
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A Posteriori Error Analysis
o Linearity of dy(-; -, -),

dh(uh: u, Ihu — Uh) = dh(uh; u—up, IhU — Uh) + dh(uh:uh, IhU — Uh)
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A Posteriori Error Analysis
o Linearity of dy(-; -, -),

dh(uh: u,lhu — Uh) = dh(uh; u—up, ’hU — Uh) + dh(uh:uh, Ihu — uh)

o Using interpolation estimates, Cauchy-Schwarz, trace inequality, inverse
estimate, and Young's inequality

d e | - Cy .| kahZ ko 1 21 g2l
h(Up; Up, lhu —up) < ?me 'y (1 — ag)”|de| E
Ecé&y
> 1 2
X||Vun - ez + a”u — Unlla,
where
R1 = Cedge,max (1 + (1 + Cl)2) )
R = C?nvcedge,max (1 + (1 + CI)Z) .
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Residual Based Approach

A Posteriori Error Analysis

Theorem (Global a posteriori error estimate)

A global a posteriori error estimate for the energy norm is given by*

Ju—unlla < nf+ns +n3,

where
: . AC? 4C2h2 .
it = 3 min{ 2, 1N ) o,
KeTy .
2
2 = c ol/2¢1/2 )
. dk1h? 4k ) . 91— .
n = me{iE,;}(lng)zdﬁhé NVun - tel 2
Ecé&p -
1

J.: CAMWA, 97(1), 86-99, 2021
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Hanging Nodes

Adaptive Grids

e Standard strategy for solving

%y, Zikatanov: MC, 68(228), 1429-1446, 1999
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Hanging Nodes

Adaptive Grids

e Standard strategy for solving

e Hanging nodes
o Preserves angles after red-refinement
o Avoids prism and pyramids in 3D mesh refinement
o hp adaptive refinement
e Certain stabilized schemes rely on the property of triangulation 1

%y, Zikatanov: MC, 68(228), 1429-1446, 1999
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Adaptive Grids

Adaptive Grids

Lemma

Let T be a non-conforming triangulation of €2, i.e., T has hanging nodes. Then, for all g € H(T") there are coefficients agp
withp € Ne(T) \ H(T) such that all v € V), can be represented as1?

v(q) = > agpv(p)

PENE(TH\H(T)

1Gréser: PhD Thesis, FU Berlin 2011

2J.: PhD Thesis, FU Berlin 2020
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Adaptive Grids

Lemma

Let T be a non-conforming triangulation of €2, i.e., T has hanging nodes. Then, for all g € H(T") there are coefficients agp
withp € Ne(T) \ H(T) such that all v € V), can be represented as1?

v(g) = Z agpv(p)

PENE(TH\H(T)

Theorem
Let {7’01 BN 77} be a grid hierarchy on €2 with T being conforming. Let us denote T = 77 i.e., the final refinement level.
Then a basis of V, is given byl

B(T) := {wp =@p°+ > agpep’ip € Ne(T)\ H<T>}

qEH(T)

1Gréser: PhD Thesis, FU Berlin 2011

2J.: PhD Thesis, FU Berlin 2020
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Implementation

Adaptive Grids

e Satisfaction of DMP
o DMP is satisfied if!

a; > U,
a;+a; < 0,

where gj; is in the stiffness matrix

1 Barrenechea, John, Knobloch: SINUM (54), 2427-2451, 2016
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Adaptive Grids
e Consider the sample patch
is i3
Ko
Ks I
Ky
11 iQ
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Adaptive Grids
e Initial assembly
doo do1 do2 dop3  do4 bo
ajp di1 di2 diz dig b,
Ggo d21 Q22 d23 d24 |, by
ds3p d31 d32 d3z3 d3g bs
as0 Q41 Q42 0443 Q44 by
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Adaptive Grids
e Initial assembly
doo do1 do2 dop3  do4 bo
ajp di1 di2 diz dig b,
Ggo d21 Q22 d23 d24 |, by
dsp 031 d3z2 ds3 d3q bs
dg0 041 Od42 (43 dyq by

e Conforming test space and continuity of the hanging node

1 —% 0 f% 0 0
010+% Gqua‘% Glera% Gl:;+a% 014+a‘7"1 b1+%
dzo dsz; (D) azs dz4 ) by
g0+ % Gz + % Az + 92 Az + 9 dz+ G bs+ 5%
dao ds Aa42 a3 Q44 by
Abhinav Jha
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Adaptive Grids
e Conforming ansatz space
1 1
1 -1 0 -1 0
doi dio doo do2 . do3 aio doo ) doa
0 all+2+2+4 al'_’+2 al.)+2+2+4 all+2
0 az + %0 as a3 + 220 a2
0 as, + %1 + 02,0 + aii“ dso + ng a3 + 033 + Géu + 020 asy + LQM
a. a
0 asg + =5 a42 as3 + =3¢ a44
Abhinav Jha
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Adaptive Grids
e Conforming ansatz space
1 1

- 0 —1 0
dio doo do2 5 do3 aio doo. ) do4
all+ 2 + 2 +4 al'_’+ 2 al.)+ 2 + 2 + 4 all+ 2

0 az + %0 azo a3 + 220 a2y
do as a doo2 do: a: a ado.
0 as + St S+ A+ TR an+ R+ SE+E a+ 73

0 ag + %0 d42 ay3 + 4o d44

Increases the matrix stencil by few elements
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Numerical Studies

Numerical Studies

e Algebraic stabilisation schemes
o Algebraic Flux Correction (AFC) schemes
—  Kuzmin limiter?
— BJK limiter23

Kuzmin: in Proc. Int. Conf. Comput. Meth. for Coupled Problems in Science and Engineering, CIMNE, 2007
Barrenechea, John, Knobloch: M3AS (27), 525-548, 2017

Barrenechea, John, Knobloch: arXiv: 2204.07480, 2022

John, Knobloch: arXiv: 2111.08697, 2021

A WN -
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Numerical Studies

Numerical Studies

e Algebraic stabilisation schemes

o Algebraic Flux Correction (AFC) schemes
—  Kuzmin limiter?
— BJK limiter23

o Monotone Upwind-type Algebraically Stabilized (MUAS) method*
o Drops symmetric condition on «j;
o AFC system is modified

(A+D)U=F+ (D-B)U,
where

by = max { (1 — @j;(u)) a;, 0, (1 — @ji(u)) 0j }

Kuzmin: in Proc. Int. Conf. Comput. Meth. for Coupled Problems in Science and Engineering, CIMNE, 2007
Barrenechea, John, Knobloch: M3AS (27), 525-548, 2017

A WN -

Barrenechea, John, Knobloch: arXiv: 2204.07480, 2022
John, Knobloch: arXiv: 2111.08697, 2021
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Numerical Studies

e Comparison of results:
o Accuracy of solution

KR TEIE)!
- ‘v(')HL*’\Q\

1Augustin, Caiazzo, Fiebach, Fuhrmann, John, Linke, Umla : CMAME (200), 3395 - 3409, 2011
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Numerical Studies

e Comparison of results:
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— I ez
- ‘v(')HL*’\Q\
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Numerical Studies

e Comparison of results:
o Accuracy of solution
- ‘ ’ ‘ L2(Q2)
— IVO) iz
o Efficiency of the scheme
o Global satisfaction of DMP

0SCmax(Up) := max Up(x,y) — 1 — min_up(x,y)
(xy)eQ (xy)EQ
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Numerical Studies

e Comparison of results:
o Accuracy of solution
= I ez
— IVO) iz
Efficiency of the scheme

@]
o Global satisfaction of DMP
0SCmax(Up) := max Up(x,y) — 1 — min_up(x,y)
(xy)eQ (xy)eQ

@]

Smearing of internal layer!
Adaptive grids

O
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Numerical Studies

e Comparison of results:
o Accuracy of solution
- ‘ ’ ‘ L2(Q)
- ‘V(;',)HL*’\Q]
Efficiency of the scheme

@]
o Global satisfaction of DMP
0SCmax(Up) := max Up(x,y) — 1 — min_up(x,y)
(xy)eQ (xy)eQ

@]

Smearing of internal layer!
Adaptive grids

— Conforming closure

— Hanging nodes

O

1Augustin, Caiazzo, Fiebach, Fuhrmann, John, Linke, Umla : CMAME (200), 3395 - 3409, 2011
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Numerical Studies

e Comparison of results:
o Accuracy of solution
- ‘ ’ HL"(EZ\
- ‘V(;',)HL*’\'SZJ
Efficiency of the scheme

@]
o Global satisfaction of DMP
0SCmax(Up) := max Up(x,y) — 1 — min_up(x,y)
(xy)eQ (xy)eQ

@]

Smearing of internal layer!
Adaptive grids

— Conforming closure

— Hanging nodes

For MUAS method neglect 73

O

1Augustin, Caiazzo, Fiebach, Fuhrmann, John, Linke, Umla : CMAME (200), 3395 - 3409, 2011
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Numerical Studies

e |terative solver
o Matrix formulation of the algebraic stabilised schemes!2

(A+D)U=F+ (D—-B(U))U
o Fixed point right-hand side

(A+D)U" = F+ (D-B(U"))U",
U = wU + (1 —w)u,

where w > 0 is a dynamic damping parameter

1} John: BAIL 2018 (135), 2020
2}, John: CAMWA (78), 3117-3138, 2019
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Numerical Studies

e Example with corner boundary layer!
e O=(0,1)2,e=10"2,b=(2,3)T,c=1,u, = 0,8 = 0, and f such that

T A e B e R )

€

e stop of the non linear iteration 2
o 10000 iterations
o |[residuall|2 < V#dof10~10

1John, Knobloch, Savescu: CMAME (200), 2916-2929, 2011
2}, John: CAMWA (78), 3117-3138, 2019
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Numerical Studies
e Example with corner boundary layer!

e O=(0,1)2,e=10"2,b=(2,3)T,c=1,u, = 0,8 = 0, and f such that

T A e B e R )

€

e stop of the non linear iteration 2
o 10000 iterations
o |[residuall|2 < V#dof10~10
[ ]

stop of the adaptive algorithm
o n<1073
o #dof ~ 10

1John, Knobloch, Savescu: CMAME (200), 2916-2929, 2011
2}, John: CAMWA (78), 3117-3138, 2019
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e L2(Q) Error

conforming closure

Numerical Studies

hanging nodes

B B
et Beg 10} B E
102 102 ¢ E
= 107%¢ = 1070 - E
| B | B
El ] El i
=10t = 10t E
-H- B - BK 1
1075 | +Kuzmin ey 10°° Kuzmin Bl
MUAS ’~.~ MUAS " E
==+ Optimal rate O(h?) . 1 ==+ Optimal rate O(h?) - 1

10t 102 103 10* 10° 10t 102 103 10* 10°
# dof # dof
Abhinav Jha
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Numerical Studies

e L2(Q) Error of the gradient

conforming closure hanging nodes
T
10t F E 10t - E
1 5] .""l----‘ 1
? 100 F 1 ? 100 F ’
| ] |
3 ] s
4 ) 4
- BJK b - BJK
Kuzmin Kuzmin
10~ | MUAS B 107 MUAS ~ E
Optimal rate O(h) hl =+=+ Optimal rate O(h) : hl
L L L L | L L L L b
10! 10? 10° 10t 10° 10! 10? 10° 10t 10°
# dof # dof
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e Efficiency

conforming closure

Numerical Studies

hanging nodes
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[ ] - BJK 120 -@- BJK 4
120 h B -@- Kuzmin
-&- MUAS
v 100 | ., loo f
c c
: :
‘au—) 80 il A:‘i 80 1
o 2
5 b o
2 60 i 2 60 1
o o
5 p=
o I
S 40 R g 40 1
20 : 20 f
0 | | | |
10! 10! 102 10° 10 10°
# dof
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Numerical Studies

e Hemker problem?
e c=10"4b=(1,0)T,c=f=0

0.6

— 04

e stop of the non linear iteration
o 10000 iterations
o |residuall|z < v#dof10~8

! Hemker: JCAM 76, 277-285, 1996
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Numerical Studies

e Hemker problem?
e c=10"4b=(1,0)T,c=f=0

e stop of the non linear iteration
o 10000 iterations
o |residuall|z < v#dof10~8
e stop of the adaptive algorithm
o n<1073
o #dof & 5 x 105

! Hemker: JCAM 76, 277-285, 1996

Abhinav Jha
Adaptive Grids for Algebraic Stabilization, 6th July 2022




Numerical Studies

e Satisfaction of Global DMP

Kuzmin
11072
05Cmax (Up), conforming
+0SCmax (Up), hanging
5.1073 |
0
—5-1073 F 4
,‘1_]0—2‘”\‘ T W Y B R W W e
10% 103 10* 10° 106
# dof
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Numerical Studies

e Smearing of internal layer

conforming closure hanging nodes

0.6 T T
BJK P -H- BJK
-@- Kuzmin 081 -@- Kuzmin |
0.5 - & MUAS - H - & MUAS
reference reference
0.4+ 0.6 |-
§ 0.3+ §
5 § oap
0.2
0.2+
0.1
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Numerical Studies

Figure 1: Adaptively refined conforming grids with ~ 25, 000 #dof, AFC method and
Kuzmin limiter (left), MUAS method (right)
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e Efficiency

conforming closure

Numerical Studies

hanging nodes

Adaptive Grids for Algebraic Stabilization, 6th July 2022

-l- BJK
10,000 - B 10,000 |-| Jg eosin I n R
MUAS H

«» 8,000 4 w 8,000 R
c f=
(s} o
5 =]
1%} (%}

2 6,000 | R 2 6,000 R
2 o
+ +
2 2

S 4,000 | g S 4,000 R
5 p=i
o [
8 S
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oF B 0 g

| | | | | | | | | |

10? 10° 101 10° 106 10? 103 10* 10° 108
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Conclusions and Outlook

Conclusions and Outlook

e Conclusions!?
o Accuracy of solution
— AFC + BJK limiter and MUAS method converge on all grids
— AFC + Kuzmin limiter does not converge on adaptively refined
grids if solution becomes (locally) diffusion-dominated

1J.,J0hn, Knobloch: arXiv : 2007.08405 , 2022
2}, John: CAMWA (78), 3117-3138, 2019
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Conclusions and Outlook

Conclusions and Outlook

e Conclusions?

o Accuracy of solution
— AFC + BJK limiter and MUAS method converge on all grids
— AFC + Kuzmin limiter does not converge on adaptively refined

grids if solution becomes (locally) diffusion-dominated

o Efficiency
— AFC+ Kuzmin limiter and the MUAS method? most efficient

o Satisfaction of DMP
— Global DMP satisfied on grids with hanging nodes
— AFC+ Kuzmin limiter did not satisfy on conformally closed grids

1J.,J0hn, Knobloch: arXiv : 2007.08405 , 2022
2}, John: CAMWA (78), 3117-3138, 2019

Abhinav Jha
Adaptive Grids for Algebraic Stabilization, 6th July 2022




Conclusions and Outlook

Conclusions and Outlook

e Conclusions?
o Accuracy of solution
— AFC + BJK limiter and MUAS method converge on all grids
— AFC + Kuzmin limiter does not converge on adaptively refined
grids if solution becomes (locally) diffusion-dominated
o Efficiency
— AFC+ Kuzmin limiter and the MUAS method? most efficient
o Satisfaction of DMP
— Global DMP satisfied on grids with hanging nodes
— AFC+ Kuzmin limiter did not satisfy on conformally closed grids
o Smearing
— AFC + BJK limiter sharpest layer
— For fine grids, all values close to reference value
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Conclusions and Outlook

e Conclusions?
o Accuracy of solution
— AFC + BJK limiter and MUAS method converge on all grids
— AFC + Kuzmin limiter does not converge on adaptively refined
grids if solution becomes (locally) diffusion-dominated
o Efficiency
— AFC+ Kuzmin limiter and the MUAS method? most efficient
o Satisfaction of DMP
— Global DMP satisfied on grids with hanging nodes
— AFC+ Kuzmin limiter did not satisfy on conformally closed grids
o Smearing
— AFC + BJK limiter sharpest layer
— For fine grids, all values close to reference value
e MUAS method most promising
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e Outlook

o Development of estimators for MUAS method
o Numerical studies in 3D
o Comparison with Monolithic Convex Limiter!2

1Kuzmin: CMAME (361), 112804, 2020
2J., Partl, Ahmed, Kuzmin: JNUM, 10.1515/jnma-2021-0123, 2022
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