Overview of the Domain Decomposition Method for the Linear Poisson Boltzmann Equations

Abhinav Jha

Numerical Mathematics for High Performance Computing, Universität Stuttgart

Hauptseminar Numerische Analysis und Simulation 8th December 2022

Joint work with M.Nottoli (Universität Stuttgart, Stuttgart), A.Mikhalev (RWTH Aachen University, Aachen),

C. Quan (SUS Tech, China), and B. Stamm (Universität Stuttgart, Stuttgart)

- **1** Solvation Models
- 2 ddLPB Method
- 3 ddLPB Derivation
- 4 Computation of Forces
- **5** Numerical Studies
- 6 Conclusions and Outlook

- Ionic Solvation Models¹
 - Explicit Solvation Models
 - Adopts molecular representation of both solute and solvent
 - Accurate results
 - Computationally expensive

¹Zhang et. al.: JCTC, 13, 1034-1043, 2017

- ²Tomasci, Persico: CR 94, 2027-2094, 1994
- ³Honig, Nicholls: Sci. 268, 1144-1149, 1995

Abhinav Jha

Overview of ddLPB method, 8^{th} December 2022

- Ionic Solvation Models¹
 - Explicit Solvation Models
 - Adopts molecular representation of both solute and solvent
 - Accurate results
 - Computationally expensive
 - Implicit Solvation Models ^{2,3}
 - Microscopic treatment of solute
 - Macroscopic treatment of solvent using physical properties
 - Less computational cost

¹Zhang et. al.: JCTC, 13, 1034-1043, 2017

²Tomasci, Persico: CR 94, 2027-2094, 1994

³Honig, Nicholls: Sci. 268, 1144-1149, 1995

Abhinav Jha

Solvation Models ddLPB Method ddLPB Derivation Computation of Forces Numerical Studies Conclusions and Outlook

Figure 1: Formaldehyde molecule

• Linear Poisson-Boltzman (LPB) equation

 $-\nabla \cdot [\varepsilon(\mathbf{x}) \nabla \psi(\mathbf{x})] + \bar{\kappa}(\mathbf{x})^2 \psi(\mathbf{x}) = 4\pi \rho_{\mathsf{M}}(\mathbf{x}) \quad \text{in } \mathbb{R}^3$

 $\circ \psi(\mathbf{x})$ – Electrostatic potential

• Linear Poisson-Boltzman (LPB) equation

$$-\nabla \cdot [\varepsilon(\mathbf{x})\nabla\psi(\mathbf{x})] + \bar{\kappa}(\mathbf{x})^2\psi(\mathbf{x}) = 4\pi\rho_{\mathsf{M}}(\mathbf{x}) \quad \text{in } \mathbb{R}^3$$

• $\psi(\mathbf{x})$ – Electrostatic potential • $\varepsilon(\mathbf{x})$ – Space-dependent dielectric permittivity

$$\varepsilon(\mathbf{x}) = \begin{cases} \varepsilon_1 & \text{in } \Omega, \\ \varepsilon_2 & \text{in } \Omega^{\mathsf{C}} := \mathbb{R}^3 \setminus \overline{\Omega} \end{cases}$$

 $\circ \Omega$ – Solute Cavity

 $\circ \bar{\kappa}(\mathbf{x})$ – Modified Debye-Hückel parameter

$$\bar{\kappa}(\mathbf{X}) = \begin{cases} 0 & \text{in } \Omega, \\ \sqrt{\varepsilon_2} \kappa & \text{in } \Omega^{\mathsf{C}} \end{cases}$$

κ – Debye-Hückel screening constant

 $\circ \bar{\kappa}(\mathbf{x})$ – Modified Debye-Hückel parameter

$$\bar{\kappa}(\mathbf{X}) = \begin{cases} 0 & \text{in } \Omega, \\ \sqrt{\varepsilon_2} \kappa & \text{in } \Omega^{\mathsf{C}} \end{cases}$$

• κ - Debye-Hückel screening constant • $\rho_{M}(x)$ - Solute charge distribution

$$\rho_{\mathsf{M}}(\mathbf{x}) = \sum_{i=1}^{\mathsf{M}} q_i \delta(\mathbf{x} - \mathbf{x}_i)$$

M – Number of solute atoms
 q_i – Partial charge on the ith atom

Solvation Models ddLPB Method ddLPB Derivation Computation of Forces Numerical Studies Conclusions and Outlook

• Boundary Element Method (BEM)¹

¹Yoon, Lehnoff: JCC 11, 1080–1086, 1990 ²Madura et.al.: CPC 91, 57–95, 1995 ³Chen, Holst, Xu: SINUM 45, 2295–2320, 2007 ⁴Cancés, Maday, Stamm: JCP 139, 054111, 2013 ⁵Lipparini et.al.: JCP 141, 184108, 2014 ⁶Quan, Stamm, Maday: SISC 41, B320–B350, 2019 ⁷Lebedev, Laikov: DM 59, 477–481, 1999

Abhinav Jha

Solvation Models ddLPB Method ddLPB Derivation Computation of Forces Numerical Studies Conclusions and Outlook

- Boundary Element Method (BEM)¹
- Finite Difference Method (FDM)²

¹Yoon, Lehnoff: JCC 11, 1080-1086, 1990 ²Madura et.al.: CPC 91, 57-95, 1995 ³Chen, Holst, Xu: SINUM 45, 2295-2320, 2007 ⁴Cancés, Maday, Stamm: JCP 139, 054111, 2013 ⁵Lipparini et.al.: JCP 141, 184108, 2014 ⁶Quan, Stamm, Maday: SISC 41, B320-B350, 2019 ⁷Lebedev, Laikov: DM 59, 477-481, 1999

Abhinav Jha

Solvation Models ddLPB Method ddLPB Derivation Computation of Forces Numerical Studies Conclusions and Outlook

- Boundary Element Method (BEM)¹
- Finite Difference Method (FDM)²
- Finite Element Method (FEM)³

¹Yoon, Lehnoff: JCC 11, 1080-1086, 1990 ²Madura et.al.: CPC 91, 57-95, 1995 ³Chen, Holst, Xu: SINUM 45, 2295-2320, 2007 ⁴Cancés, Maday, Stamm: JCP 139, 054111, 2013 ⁵Lipparini et.al.: JCP 141, 184108, 2014 ⁶Quan, Stamm, Maday: SISC 41, B320-B350, 2019 ⁷Lebedev, Laikov: DM 59, 477-481, 1999

Abhinav Jha

Solvation Models ddLPB Method ddLPB Derivation Computation of Forces Numerical Studies Conclusions and Outlook

- Boundary Element Method (BEM) ¹
- Finite Difference Method (FDM)²
- Finite Element Method (FEM)³
- Domain Decomposition Methods ^{4,5,6}

¹Yoon, Lehnoff: JCC 11, 1080-1086, 1990 ²Madura et.al.: CPC 91, 57-95, 1995 ³Chen, Holst, Xu: SINUM 45, 2295-2320, 2007 ⁴Cancés, Maday, Stamm: JCP 139, 054111, 2013 ⁵Lipparini et.al.: JCP 141, 184108, 2014 ⁶Quan, Stamm, Maday: SISC 41, B320-B350, 2019 ⁷Lebedev, Laikov: DM 59, 477-481, 1999

Abhinav Jha

Solvation Models ddLPB Method ddLPB Derivation Computation of Forces Numerical Studies Conclusions and Outlook

- Boundary Element Method (BEM) ¹
- Finite Difference Method (FDM)²
- Finite Element Method (FEM)³
- Domain Decomposition Methods ^{4,5,6}
 - Schwarz decomposition method
 - Does not rely on mesh but quadrature points⁷
 - Computation of forces becomes natural as spheres are centered at nucleus position

¹ Yoon, Lehnoff: JCC 11, 1080-1086, 1990 ² Madura et.al.: CPC 91, 57-95, 1995 ³ Chen, Holst, Xu: SINUM 45, 2295-2320, 2007 ⁴ Cancés, Maday, Stamm: JCP 139, 054111, 2013 ⁵ Lipparini et.al.: JCP 141, 184108, 2014 ⁶ Quan, Stamm, Maday: SISC 41, B320-B350, 2019 ⁷ Lebedev, Laikov: DM 59, 477-481, 1999

Abhinav Jha

Solvation Models ddLPB Method ddLPB Derivation Computation of Forces Numerical Studies Conclusions and Outlook

• The LPB equation can be written in two equations

$$\begin{split} -\Delta \psi(\mathbf{x}) &= \frac{4\pi}{\varepsilon_1} \rho_{\mathsf{M}}(\mathbf{x}) \qquad \text{in } \Omega, \\ -\Delta \psi(\mathbf{x}) &+ \kappa^2 \psi(\mathbf{x}) = 0 \qquad \text{in } \Omega^{\mathsf{C}}, \end{split}$$

with

$$\llbracket \boldsymbol{\psi}(\mathbf{x}) \rrbracket = 0 \qquad \text{on } \Gamma = \partial \Omega,$$
$$\llbracket \partial_{\mathbf{n}} \left(\boldsymbol{\varepsilon} \boldsymbol{\psi} \right) \left(\mathbf{x} \right) \rrbracket = 0 \qquad \text{on } \Gamma$$

Solvation Models ddLPB Method ddLPB Derivation Computation of Forces Numerical Studies Conclusions and Outlook

• Using potential theory the final equations are

$$-\Delta \psi_{\mathsf{r}}(\mathsf{x}) \qquad = \quad 0 \quad \text{in } \Omega,$$

$$-\Delta\psi_{\mathsf{e}}(\mathsf{x}) + \kappa^2\psi_{\mathsf{e}}(\mathsf{x}) = 0 \quad \text{in } \Omega,$$

¹Sauter, Schwab, Springer, Berlin-2011, Thm. 3.3.1

Solvation Models ddLPB Method ddLPB Derivation Computation of Forces Numerical Studies Conclusions and Outlook

• Using potential theory the final equations are

$$\begin{aligned} -\Delta\psi_{\mathbf{r}}(\mathbf{x}) &= 0 \quad \text{in }\Omega, \\ -\Delta\psi_{\mathbf{e}}(\mathbf{x}) + \kappa^{2}\psi_{\mathbf{e}}(\mathbf{x}) &= 0 \quad \text{in }\Omega, \end{aligned}$$

with

$$\begin{split} \psi_0 + \psi_{\mathbf{r}} &= \psi_{\mathbf{e}} & \text{on } \Gamma, \\ \sigma_{\mathbf{e}} &= \partial_{\mathbf{n}} \psi_{\mathbf{e}} - \frac{\varepsilon_1}{\varepsilon_2} \partial_{\mathbf{n}} (\psi_0 + \psi_{\mathbf{r}}) & \text{on } \Gamma^1 \end{split}$$

¹Sauter, Schwab, Springer, Berlin-2011, Thm. 3.3.1

Solvation Models ddLPB Method ddLPB Derivation Computation of Forces Numerical Studies Conclusions and Outlook

• Using potential theory the final equations are

$$\begin{aligned} -\Delta\psi_{\mathbf{r}}(\mathbf{x}) &= 0 \quad \text{in }\Omega, \\ -\Delta\psi_{\mathbf{e}}(\mathbf{x}) + \kappa^{2}\psi_{\mathbf{e}}(\mathbf{x}) &= 0 \quad \text{in }\Omega, \end{aligned}$$

with

$$\begin{split} \psi_0 + \psi_{\mathbf{r}} &= \psi_{\mathbf{e}} & \text{on } \Gamma, \\ \sigma_{\mathbf{e}} &= \partial_{\mathbf{n}} \psi_{\mathbf{e}} - \frac{\varepsilon_1}{\varepsilon_2} \partial_{\mathbf{n}} (\psi_0 + \psi_{\mathbf{r}}) & \text{on } \Gamma^1 \end{split}$$

where

 $∘ ψ_r -$ Reaction potential in Ω $∘ ψ_0 -$ Potential generated by $ρ_M$ satisfying,

$$-\Delta\psi_0 = rac{4\pi}{arepsilon_1}
ho_{\mathsf{M}}$$

¹Sauter, Schwab, Springer, Berlin-2011, Thm. 3.3.1

Solvation Models ddLPB Method ddLPB Derivation Computation of Forces Numerical Studies Conclusions and Outlook

ψ_e - Extended potential from Ω^C to Ω
 σ_e - Charge density generating ψ_e satisfying

$$\mathbf{S}_{\kappa}\boldsymbol{\sigma}_{\mathbf{e}}(\mathbf{x}) := \int_{\Gamma} \frac{\exp\left(-\kappa |\mathbf{x} - \mathbf{y}|\right)\boldsymbol{\sigma}_{\mathbf{e}}(\mathbf{y})}{4\pi |\mathbf{x} - \mathbf{y}|} = \psi_{\mathbf{e}} \quad \forall \ \mathbf{x} \in \Gamma$$

• S_{κ} – Invertible single-layer potential operator ¹

 $\mathbf{S}_{\kappa}: \mathbf{H}^{-1/2}(\Gamma) \to \mathbf{H}^{1/2}(\Gamma)$

¹Sauter, Schwab, Springer, Berlin-2011, 101-181

Solvation Models ddLPB Method ddLPB Derivation Computation of Forces Numerical Studies Conclusions and Outlook

olvation Models ddLPB Method ddLPB Der	ivation Computation of For	tes Numerical Studies	Conclusions and Outlook
--	----------------------------	-----------------------	-------------------------

olvation Models ddLPB Method dd		Computation of Forces	Numerical Studies		Outlook
---------------------------------	--	-----------------------	-------------------	--	---------

Solvation Models ddLPB Method ddL		Computation of Forces	Numerical Studies		Dutlook
-----------------------------------	--	-----------------------	-------------------	--	---------

Global strategy

Solvation Models ddLPB Method ddLPB Derivation Computation of Forces Numerical Studies Conclusions and Outlook

Domain Decomposition Scheme

Solvation Models ddLPB Method ddLPB Derivation Computation of Forces Numerical Studies Conclusions and Outlook

- According to definition of Ω

$$\Omega = \bigcup_{j=1}^{\mathsf{M}} \Omega_j, \quad \Omega_j = \mathsf{B}_{\mathsf{r}_j}(\mathsf{x}_j)$$

Laplace equation restricted to Ω_j

$$\begin{split} -\Delta \psi_{\mathbf{r}}|_{\Omega_{j}} &= 0 & \text{ in } \Omega_{j}, \\ \psi_{\mathbf{r}}|_{\Gamma_{j}} &= \phi_{\mathbf{r},j} & \text{ on } \Gamma_{j} \end{split}$$

where

$$\phi_{\mathbf{r},j} = \left\{ \begin{array}{ll} \psi_{\mathbf{r}} & \mbox{ on } \Gamma_j^{\mathbf{i}}, \\ \mathbf{g} - \psi_0 & \mbox{ on } \Gamma_j^{\mathbf{e}} \end{array} \right.$$

Domain Decomposition Scheme

Solvation Models ddLPB Method ddLPB Derivation Computation of Forces Numerical Studies Conclusions and Outlook

• HSP equation restricted to Ω_i

$$\begin{split} -\Delta \psi_{\mathbf{e}}|_{\Omega_{j}} + \kappa^{2}\psi_{\mathbf{e}}|_{\Omega_{j}} &= 0 & \text{ in } \Omega_{j}, \\ \psi_{\mathbf{e}}|_{\Gamma_{j}} &= \phi_{\mathbf{e},j} & \text{ on } \Gamma_{j} \end{split}$$

where

$$\phi_{e,j} = \left\{ egin{array}{cc} \psi_{e} & ext{on } \Gamma_{j}^{i}, \ \mathbf{g} & ext{on } \Gamma_{j}^{e} \end{array}
ight.$$

Domain Decomposition Scheme

Solvation Models ddLPB Method ddLPB Derivation Computation of Forces Numerical Studies Conclusions and Outlook

• HSP equation restricted to Ω_i

$$\begin{split} -\Delta \psi_{\mathbf{e}}|_{\Omega_{j}} + \kappa^{2}\psi_{\mathbf{e}}|_{\Omega_{j}} &= 0 & \text{ in } \Omega_{j}, \\ \psi_{\mathbf{e}}|_{\Gamma_{j}} &= \phi_{\mathbf{e},j} & \text{ on } \Gamma_{j} \end{split}$$

where

$$\phi_{\mathrm{e},j} = \left\{ \begin{array}{ll} \psi_{\mathrm{e}} & \mathrm{on} \ \Gamma_{j}^{\mathrm{i}}, \\ \mathbf{g} & \mathrm{on} \ \Gamma_{j}^{\mathrm{e}} \end{array} \right.$$

and

Figure 2: 2-D schematic diagram of Γ_j^i and Γ_j^e

Solvation Models ddLPB Method ddLPB Derivation Computation of Forces Numerical Studies Conclusions and Outlook

• Laplace equation in unit ball

$$\begin{aligned} -\Delta \mathbf{u}_{\mathsf{r}} &= 0 \quad \text{ in } \mathcal{B}_1(0), \\ \mathbf{u}_{\mathsf{r}} &= \phi_{\mathsf{r}} \quad \text{ on } \mathbb{S}^2 \end{aligned}$$

• Unique solution in $H^1(B_1(0))$

$$\mathbf{u}_{\mathbf{r}}(\mathbf{r},\theta,\varphi) = \sum_{\ell=0}^{\infty} \sum_{m=-\ell}^{\ell} \left[\phi_{\mathbf{r}}\right]_{\ell}^{m} \mathbf{r}^{\ell} \mathbf{Y}_{\ell}^{m}(\theta,\varphi)$$

for $0 \leq \mathbf{r} \leq 1, \ 0 \leq \theta \leq \pi, \ 0 \leq \varphi < 2\pi$

Solvation Models ddLPB Method ddLPB Derivation Computation of Forces Numerical Studies Conclusions and Outlook

• Laplace equation in unit ball

$$\begin{split} -\Delta \mathbf{u}_{\mathbf{r}} &= 0 \quad \text{ in } \mathcal{B}_1(0), \\ \mathbf{u}_{\mathbf{r}} &= \phi_{\mathbf{r}} \quad \text{ on } \mathbb{S}^2 \end{split}$$

• Unique solution in $H^1(B_1(0))$

$$\mathbf{u}_{\mathbf{r}}(\mathbf{r},\theta,\varphi) = \sum_{\ell=0}^{\infty} \sum_{m=-\ell}^{\ell} \left[\phi_{\mathbf{r}}\right]_{\ell}^{m} \mathbf{r}^{\ell} \mathbf{Y}_{\ell}^{m}(\theta,\varphi)$$

for
$$0 \le r \le 1, \ 0 \le \theta \le \pi, \ 0 \le \varphi < 2\pi$$
 where

- Y_{ℓ}^m (Real orthonormal) spherical harmonics of degree ℓ and order m on \mathbb{S}^2
- $[\phi_r]_{\ell}^m$ Real coefficient of u_r corresponding to Y_{ℓ}^m

$$\left[\phi_{\mathsf{r}}\right]_{\ell}^{\mathsf{m}} = \int_{\mathbb{S}^2} \phi_{\mathsf{r}}(s) \mathsf{Y}_{\ell}^{\mathsf{m}}(s) ds$$

Solvation Models ddLPB Method ddLPB Derivation Computation of Forces Numerical Studies Conclusions and Outlook

• u_r can be numerically approximated by \tilde{u}_r

$$\tilde{\mathbf{u}}_{\mathbf{r}}(\mathbf{r},\theta,\varphi) = \sum_{\ell=0}^{\ell_{\max}} \sum_{m=-\ell}^{\ell} \left[\tilde{\phi}_{\mathbf{r}} \right]_{\ell}^{m} \mathbf{r}^{\ell} \mathbf{Y}_{\ell}^{m}(\theta,\varphi)$$

for $0 \le \mathbf{r} \le 1, \ 0 \le \theta \le \pi, \ 0 \le \varphi < 2\pi$

Solvation Models ddLPB Method ddLPB Derivation Computation of Forces Numerical Studies Conclusions and Outlook

• u_r can be numerically approximated by \tilde{u}_r

$$\tilde{\mathbf{U}}_{\mathbf{r}}(\mathbf{r},\theta,\varphi) = \sum_{\ell=0}^{\ell_{\max}} \sum_{m=-\ell}^{\ell} \left[\tilde{\phi}_{\mathbf{r}} \right]_{\ell}^{m} \mathbf{r}^{\ell} \mathbf{Y}_{\ell}^{m}(\theta,\varphi)$$

for $0 \le \mathbf{r} \le 1, \ 0 \le \theta \le \pi, \ 0 \le \varphi < 2\pi$ where

• ℓ_{\max} – Maximum degree of Y_{ℓ}^{m} • $\left[\tilde{\phi}_{r}\right]_{\ell}^{m}$ – Numerical approximation of $\left[\phi_{r}\right]_{\ell}^{m}$

$$\left[\tilde{\phi}_{\mathsf{r}}\right]_{\ell}^{\mathsf{m}} = \sum_{n=1}^{\mathsf{N}_{\mathsf{leb}}} \omega_{n}^{\mathsf{leb}} \phi_{\mathsf{r}}(s_{n}) \mathsf{Y}_{\ell}^{\mathsf{m}}(s_{n})$$

 $\circ s_n \in \mathbb{S}^2$ - Lebedev quadrature points

- $\circ \omega_n^{\text{leb}}$ Lebedev quadrature weights
- N_{leb} Number of Lebedev quadrature points

Solvation Models ddLPB Method ddLPB Derivation Computation of Forces Numerical Studies Conclusions and Outlook

• HSP equation in unit ball

$$\begin{aligned} -\Delta u_{\mathsf{e}} + \frac{\kappa^2 u_{\mathsf{e}}^2}{\kappa^2} &= 0 \quad \text{ in } B_1(0), \\ u_{\mathsf{e}} &= \phi_{\mathsf{e}} \quad \text{ on } \mathbb{S}^2 \end{aligned}$$

• Unique solution

$$\mathbf{u}_{\mathbf{e}}(\mathbf{r},\theta,\varphi) = \sum_{\ell=0}^{\infty} \sum_{m=-\ell}^{\ell} [\phi_{\mathbf{e}}]_{\ell}^{m} \mathbf{i}_{\ell}(\mathbf{r}) \mathbf{Y}_{\ell}^{m}(\theta,\varphi)$$

for $0 \leq \mathbf{r} \leq 1, \ 0 \leq \theta \leq \pi, \ 0 \leq \varphi < 2\pi$

Solvation Models ddLPB Method ddLPB Derivation Computation of Forces Numerical Studies Conclusions and Outlook

• HSP equation in unit ball

$$\begin{aligned} -\Delta u_{\mathsf{e}} + \frac{\kappa^2 u_{\mathsf{e}}^2}{\kappa^2} &= 0 \quad \text{ in } B_1(0), \\ u_{\mathsf{e}} &= \phi_{\mathsf{e}} \quad \text{ on } \mathbb{S}^2 \end{aligned}$$

• Unique solution

$$\mathsf{u}_{\mathsf{e}}(\mathsf{r},\theta,\varphi) = \sum_{\ell=0}^{\infty} \sum_{\mathsf{m}=-\ell}^{\ell} [\phi_{\mathsf{e}}]_{\ell}^{\mathsf{m}} \mathsf{i}_{\ell}(\mathsf{r}) \mathsf{Y}_{\ell}^{\mathsf{m}}(\theta,\varphi)$$

for $0 \le \mathbf{r} \le 1, \ 0 \le \theta \le \pi, \ 0 \le \varphi < 2\pi$ where

$$\circ \ [\phi_{\mathsf{e}}]_{\ell}^{\mathsf{m}} - \operatorname{Coefficient} \text{ of } \mathsf{Y}_{\ell}^{\mathsf{m}}$$

• $i_{\ell}(r)$ – Bessel functions of the first kind

• u_e can be numerically approximated by \tilde{u}_e

$$\tilde{\mathbf{u}}_{\mathbf{e}}(\mathbf{r}, \theta, \varphi) = \sum_{\ell=0}^{\ell_{\max}} \sum_{m=-\ell}^{\ell} \left[\tilde{\phi}_{\mathbf{e}} \right]_{\ell}^{m} \frac{\mathbf{i}_{\ell}(\mathbf{r})}{\mathbf{i}_{\ell}(1)} \mathbf{Y}_{\ell}^{m}(\theta, \varphi)$$

for $0 \le \mathbf{r} \le 1, \ 0 \le \theta \le \pi, \ 0 \le \varphi < 2\pi$

• u_e can be numerically approximated by \tilde{u}_e

$$\tilde{\mathbf{u}}_{\mathbf{e}}(\mathbf{r},\boldsymbol{\theta},\varphi) = \sum_{\ell=0}^{\ell_{\max}} \sum_{m=-\ell}^{\ell} \left[\tilde{\phi}_{\mathbf{e}} \right]_{\ell}^{m} \frac{\mathbf{i}_{\ell}(\mathbf{r})}{\mathbf{i}_{\ell}(1)} \mathbf{Y}_{\ell}^{m}(\boldsymbol{\theta},\varphi)$$

for
$$0 \le r \le 1, \ 0 \le \theta \le \pi, \ 0 \le \varphi < 2\pi$$

where
 $\circ \left[\tilde{\phi}_{\mathsf{e}}\right]_{\ell}^{\mathsf{m}}$ – Numerical approximation of $[\phi_{\mathsf{e}}]_{\ell}^{\mathsf{m}}$

$$\left[\tilde{\phi}_{\mathrm{e}}\right]_{\ell}^{m} = \sum_{n=1}^{N_{\mathrm{leb}}} \omega_{n}^{\mathrm{leb}} \phi_{\mathrm{e}}(s_{n}) \mathbf{Y}_{\ell}^{m}(s_{n})$$

• Rewriting the coupling equations as

$$\psi_{\mathbf{r}}|_{\Gamma_{j}}(\mathbf{x}) - \sum_{i \neq j} \omega_{ji}(\mathbf{x})\psi_{\mathbf{r}}|_{\Omega_{i}}(\mathbf{x}) = \chi_{j}^{\mathbf{e}}(\mathbf{x})(\mathbf{g}(\mathbf{x}) - \psi_{0}(\mathbf{x})) \quad \forall \mathbf{x} \in \Gamma_{j}$$

and

$$\psi_{\mathsf{e}}|_{\Gamma_j}(\mathsf{x}) - \sum_{i \neq j} \omega_{ji}(\mathsf{x})\psi_{\mathsf{e}}|_{\Omega_i}(\mathsf{x}) = \chi_j^{\mathsf{e}}(\mathsf{x})\mathsf{g}(\mathsf{x}) \quad \forall \mathsf{x} \in \Gamma_j$$

• Rewriting the coupling equations as

$$\psi_{\mathbf{r}}|_{\Gamma_{j}}(\mathbf{x}) - \sum_{i \neq j} \omega_{ji}(\mathbf{x})\psi_{\mathbf{r}}|_{\Omega_{i}}(\mathbf{x}) = \chi_{j}^{\mathbf{e}}(\mathbf{x})(\mathbf{g}(\mathbf{x}) - \psi_{0}(\mathbf{x})) \quad \forall \mathbf{x} \in \Gamma_{j}$$

and

$$\psi_{\mathsf{e}}|_{\Gamma_{j}}(\mathbf{x}) - \sum_{i \neq j} \omega_{ji}(\mathbf{x})\psi_{\mathsf{e}}|_{\Omega_{i}}(\mathbf{x}) = \chi_{j}^{\mathsf{e}}(\mathbf{x})\mathbf{g}(\mathbf{x}) \quad \forall \mathbf{x} \in \Gamma_{j}$$

where

$$\circ \ \chi_j^{\mathbf{e}}(\mathbf{x}) := \begin{cases} 1 & \text{if } \mathbf{x} \in \Gamma_j^{\mathbf{e}}, \\ 0 & \text{if } \mathbf{x} \in \Gamma_j^{\mathbf{i}}. \end{cases}, \qquad \omega_{ji}(\mathbf{x}) := \frac{\chi_i(\mathbf{x})}{\sum_{k \neq j} \chi_k(\mathbf{x})}$$

• Rewriting the coupling equations as

$$\psi_{\mathbf{r}}|_{\Gamma_{j}}(\mathbf{x}) - \sum_{i \neq j} \omega_{ji}(\mathbf{x})\psi_{\mathbf{r}}|_{\Omega_{i}}(\mathbf{x}) = \chi_{j}^{\mathbf{e}}(\mathbf{x})(\mathbf{g}(\mathbf{x}) - \psi_{0}(\mathbf{x})) \quad \forall \mathbf{x} \in \Gamma_{j}$$

and

$$\psi_{\mathsf{e}}|_{\Gamma_{j}}(x) - \sum_{i \neq j} \omega_{ji}(x)\psi_{\mathsf{e}}|_{\Omega_{i}}(x) = \chi_{j}^{\mathsf{e}}(x)g(x) \quad \forall x \in \Gamma_{j}$$

where

$$\circ \ \chi_j^{\mathbf{e}}(\mathbf{x}) := \begin{cases} 1 & \text{if } \mathbf{x} \in \Gamma_j^{\mathbf{e}}, \\ 0 & \text{if } \mathbf{x} \in \Gamma_j^{\mathbf{i}}. \end{cases}, \qquad \omega_{ji}(\mathbf{x}) := \frac{\chi_i(\mathbf{x})}{\sum_{k \neq j} \chi_k(\mathbf{x})} \\ \circ \ \chi_j^{\mathbf{e}}(\mathbf{x}) = 1 - \sum_{i \neq j} \omega_{ji}(\mathbf{x}) \quad \forall \mathbf{x} \in \Gamma_j \end{cases}$$

• Reformulating the global coupling condition over each sphere Γ_i

$$\mathbf{g}(\mathbf{x}) = \sum_{i=1}^{\mathsf{M}} \tilde{\mathbf{S}}_{\kappa, \Gamma_{i}} \left[\chi_{i}^{\mathsf{e}} \left(\partial_{\mathsf{n}} \psi_{\mathsf{e}} - \frac{\varepsilon_{1}}{\varepsilon_{2}} \partial_{\mathsf{n}} (\psi_{0} + \psi_{\mathsf{r}}) \right) \right] (\mathbf{x}) \quad \forall \mathbf{x} \in \Gamma$$

• Reformulating the global coupling condition over each sphere Γ_i

$$\mathbf{g}(\mathbf{x}) = \sum_{i=1}^{\mathsf{M}} \tilde{\mathbf{S}}_{\kappa,\Gamma_{i}} \left[\chi_{i}^{\mathsf{e}} \left(\partial_{\mathsf{n}} \psi_{\mathsf{e}} - \frac{\varepsilon_{1}}{\varepsilon_{2}} \partial_{\mathsf{n}} (\psi_{0} + \psi_{\mathsf{r}}) \right) \right] (\mathbf{x}) \quad \forall \mathbf{x} \in \Gamma$$

where

0

$$\tilde{\mathbf{S}}_{\kappa,\Gamma_{i}}\sigma_{\mathbf{e}}(\mathbf{x}) := \int_{\Gamma_{i}} \frac{\exp(-\kappa|\mathbf{x}-\mathbf{y}|)\sigma_{\mathbf{e}}(\mathbf{y})}{4\pi|\mathbf{x}-\mathbf{y}|} \quad \forall \mathbf{x} \in \mathbb{R}^{3}$$

• Using $x (\in \Gamma_j) = x_j + r_j s$ for $s \in \mathbb{S}^2$, the coupling equation is

$$\begin{split} \psi_{\mathsf{r}}|_{\Gamma_{j}}(x_{j}+r_{j}s) &- \sum_{i\neq j} \omega_{ji}(x_{j}+r_{j}s)\psi_{\mathsf{r}}|_{\Omega_{i}}(x_{j}+r_{j}s) \\ &= \chi_{j}^{\mathsf{e}}(x_{j}+r_{j}s)\left(\mathsf{g}(x_{j}+r_{j}s)-\psi_{0}(x_{j}+r_{j}s)\right) \end{split}$$

• Multiplying by \mathbf{Y}_{ℓ}^{m} and integrating over \mathbb{S}^{2}

$$\left\langle \psi_{\mathbf{r}}|_{\Gamma_{j}}(x_{j}+r_{j}\bullet) - \sum_{i\neq j} \omega_{ji}(x_{j}+r_{j}\bullet)\psi_{\mathbf{r}}|_{\Omega_{i}}(x_{j}+r_{j}\bullet), \mathbf{Y}_{\ell}^{m}(\bullet) \right\rangle_{\mathbb{S}^{2}} \\ = \left\langle \chi_{j}^{\mathbf{e}}(x_{j}+r_{j}\bullet) \left(\mathbf{g}(x_{j}+r_{j}\bullet) - \psi_{0}(x_{j}+r_{j}\bullet) \right), \mathbf{Y}_{\ell}^{m}(\bullet) \right\rangle_{\mathbb{S}^{2}} \quad \forall j, \ell, m$$

• Moving from unit ball to Ω_i

$$\psi_{\mathbf{r}}|_{\Omega_{i}}(\mathbf{x}_{i}+\mathbf{r}s) = \sum_{\ell'=0}^{\boldsymbol{\ell}_{\max}} \sum_{m'=-\ell'}^{\ell'} [\mathbf{X}_{\mathbf{r}}]_{i\ell'm'} \left(\frac{\mathbf{r}}{\mathbf{r}_{i}}\right)^{\ell'} \mathbf{Y}_{\ell'}^{m'}(s), \quad 0 \le \mathbf{r} \le \mathbf{r}_{i}, \ s \in \mathbb{S}^{2}$$

and

$$\partial_{\mathbf{n}}\psi_{\mathbf{r}}(\mathbf{x}_{i}+\mathbf{r}s) = \sum_{\ell'=0}^{\ell_{\max}} \sum_{m'=-\ell'}^{\ell'} [\mathbf{X}_{\mathbf{r}}]_{i\ell'm'} \left(\frac{\ell'}{r_{i}}\right) \mathbf{Y}_{\ell'}^{m'}(s), \quad \mathbf{x}_{i}+r_{i}s \in \Gamma_{i}^{\mathbf{e}}$$

• Moving from unit ball to Ω_i

$$\psi_{\mathbf{r}}|_{\Omega_{i}}(\mathbf{x}_{i}+\mathbf{r}s) = \sum_{\ell'=0}^{\boldsymbol{\ell}\max} \sum_{m'=-\ell'}^{\ell'} [\mathbf{X}_{\mathbf{r}}]_{i\ell'm'} \left(\frac{\mathbf{r}}{\mathbf{r}_{i}}\right)^{\ell'} \mathbf{Y}_{\ell'}^{m'}(s), \quad 0 \leq \mathbf{r} \leq \mathbf{r}_{i}, \ s \in \mathbb{S}^{2}$$

and

$$\partial_{\mathbf{n}} \psi_{\mathbf{r}}(\mathbf{x}_{i} + \mathbf{r}s) = \sum_{\ell'=0}^{\ell_{\max}} \sum_{m'=-\ell'}^{\ell'} [\mathbf{X}_{\mathbf{r}}]_{i\ell'm'} \left(\frac{\ell'}{r_{i}}\right) \mathbf{Y}_{\ell'}^{m'}(s), \quad \mathbf{x}_{i} + \mathbf{r}_{i}s \in \Gamma_{i}^{e}$$

 $\circ~[X_r]_{j\ell m}-$ Unknown coeffecients of the mode Y_ℓ^m

• Using Lebedev quadrature the final linear system of equations are

 $[\mathbf{A}\mathbf{X}_{\mathsf{r}}]_{j\ell m} = [\mathbf{G}_{\mathsf{X}}]_{j\ell m} + [\mathbf{G}_{0}]_{j\ell m} \quad \forall j,\ell,m$

• Using Lebedev quadrature the final linear system of equations are

$$[\mathbf{A}\mathbf{X}_{\mathbf{r}}]_{j\ell m} = [\mathbf{G}_{\mathbf{X}}]_{j\ell m} + [\mathbf{G}_{0}]_{j\ell m} \quad \forall j, \ell, m$$

where

 $\circ~\mathbf{A-M}(\ell_{\max}+1)^2\times\mathbf{M}(\ell_{\max}+1)^2$ matrix

$$\begin{split} [\mathsf{AX}_{\mathbf{r}}]_{j\ell m} &= [\mathsf{X}_{\mathbf{r}}]_{j\ell m} - \sum_{i \neq j} \sum_{\ell',m'} \\ & \left(\sum_{n=1}^{N_{\text{leb}}} \omega_n^{\text{leb}} \omega_{ji}(x_j + r_j s_n) \left(\frac{r_{ijn}}{r_i} \right)^{\ell'} Y_{\ell'}^{m'}(s_{ijn}) Y_{\ell}^{m}(s_n) \right) \\ & \times [\mathsf{X}_{\mathbf{r}}]_{i\ell'm'} \end{split}$$

∘ (r_{ijn}, s_{ijn}) – Spherical coordinates of $x_j + r_j s_n$ associated with Γ_i

$$x_j + r_j s_n = x_i + r_{ijn} s_{ijn}$$
 with $s_{ijn} \in \mathbb{S}^2$

Solvation Models ddLPB Method ddLPB Derivation Computation of Forces Numerical Studies Conclusions and Outlook

$$\circ \ [\mathbf{G}_{X}]_{jlm} = \sum_{n=1}^{N_{leb}} \omega_{n}^{leb} \chi_{j}^{e}(x_{j} + r_{j}s_{n}) \mathbf{g}(x_{j} + r_{j}s_{n}) \mathbf{Y}_{\ell}^{m}(s_{n})$$

$$\circ \ [\mathbf{G}_{0}]_{jlm} = -\sum_{n=1}^{N_{leb}} \omega_{n}^{leb} \chi_{j}^{e}(x_{j} + r_{j}s_{n}) \psi_{0}(x_{j} + r_{j}s_{n}) \mathbf{Y}_{\ell}^{m}(s_{n})$$

• Similarly for the 2nd coupling equation

$$[\mathbf{BX}_{\mathbf{e}}]_{j\ell m} = [\mathbf{G}_{\mathbf{X}}]_{j\ell m} \quad \forall j, \ell, m$$

22

Solvation Models ddLPB Method ddLPB Derivation Computation of Forces Numerical Studies Conclusions and Outlook

$$\begin{array}{l} \circ \ \ [\mathbf{G}_{\mathsf{X}}]_{jlm} = \sum_{n=1}^{\mathsf{N}_{leb}} \omega_n^{leb} \chi_j^{\mathsf{e}}(x_j + r_j s_n) \mathbf{g}(x_j + r_j s_n) Y_{\ell}^{\mathsf{m}}(s_n) \\ \circ \ \ \ [\mathbf{G}_0]_{jlm} = -\sum_{n=1}^{\mathsf{N}_{leb}} \omega_n^{leb} \chi_j^{\mathsf{e}}(x_j + r_j s_n) \psi_0(x_j + r_j s_n) Y_{\ell}^{\mathsf{m}}(s_n) \end{array}$$

• Similarly for the 2nd coupling equation

$$[\mathbf{BX}_{\mathbf{e}}]_{j\ell m} = [\mathbf{G}_{\mathbf{X}}]_{j\ell m} \quad \forall j, \ell, m$$

where

0

$$\begin{split} [\mathsf{BX}_{\mathsf{e}}]_{j\ell m} &= [\mathsf{X}_{\mathsf{e}}]_{j\ell m} - \sum_{i \neq j} \sum_{\ell',m'} \\ & \left(\sum_{n=1}^{\mathsf{N}_{\mathsf{leb}}} \omega_n^{\mathsf{leb}} \omega_{ji}(x_j + r_j s_n) \left(\frac{i_{\ell'}(r_{ijn})}{i_{\ell'}(r_i)} \right) \mathsf{Y}_{\ell'}^{m'}(s_{ijn}) \mathsf{Y}_{\ell}^{m}(s_n) \right) \\ & \times [\mathsf{X}_{\mathsf{e}}]_{i\ell'm'} \end{split}$$

Solvation Models ddLPB Method ddLPB Derivation Computation of Forces Numerical Studies Conclusions and Outlook

• Linear System

$$LX = g$$
,

Solvation Models ddLPB Method ddLPB Derivation Computation of Forces Numerical Studies Conclusions and Outlook

• Linear System

$$LX = g$$
,

where

$$\mathbf{L} = \begin{bmatrix} \mathbf{A} & 0 \\ 0 & \mathbf{B} \end{bmatrix}, \quad \mathbf{X} = \begin{bmatrix} \mathbf{X}_{\mathsf{r}} \\ \mathbf{X}_{\mathsf{e}} \end{bmatrix}, \quad \text{and} \quad \mathbf{g} = \begin{bmatrix} \mathbf{G}_{\mathsf{X}} + \mathbf{G}_{0} \\ \mathbf{G}_{\mathsf{X}} \end{bmatrix}$$

• Using definition of g

$$\mathbf{G}_{\mathbf{X}} = \mathbf{F}_0 - \mathbf{C}_1 \mathbf{X}_{\mathsf{r}} - \mathbf{C}_2 \mathbf{X}_{\mathsf{e}}$$

Solvation Models ddLPB Method ddLPB Derivation Computation of Forces Numerical Studies Conclusions and Outlook

• Linear System

$$LX = g$$
,

where

$$\mathbf{L} = \begin{bmatrix} \mathbf{A} & 0 \\ 0 & \mathbf{B} \end{bmatrix}, \quad \mathbf{X} = \begin{bmatrix} \mathbf{X}_{\mathsf{r}} \\ \mathbf{X}_{\mathsf{e}} \end{bmatrix}, \quad \text{and} \quad \mathbf{g} = \begin{bmatrix} \mathbf{G}_{\mathsf{X}} + \mathbf{G}_{0} \\ \mathbf{G}_{\mathsf{X}} \end{bmatrix}$$

• Using definition of g

$$\mathbf{G}_{\mathbf{X}} = \mathbf{F}_0 - \mathbf{C}_1 \mathbf{X}_{\mathsf{r}} - \mathbf{C}_2 \mathbf{X}_{\mathsf{e}}$$

where

- \mathbf{F}_0 Associated with $\partial_{\mathbf{n}} \psi_0$
- C_1 Associated with $\partial_n \psi_r$
- C_2 Associated with $\partial_n \psi_e$

• Using the global strategy

$$\begin{bmatrix} \mathbf{A} & 0 \\ 0 & \mathbf{B} \end{bmatrix} \begin{bmatrix} \mathbf{X}_{\mathsf{r}^{k}} \\ \mathbf{X}_{\mathsf{e}^{k}} \end{bmatrix} = -\begin{bmatrix} \mathbf{C}_{1} & \mathbf{C}_{2} \\ \mathbf{C}_{1} & \mathbf{C}_{2} \end{bmatrix} \begin{bmatrix} \mathbf{X}_{\mathsf{r}^{k-1}} \\ \mathbf{X}_{\mathsf{e}^{k-1}} \end{bmatrix} + \begin{bmatrix} \mathbf{G}_{0} + \mathbf{F}_{0} \\ \mathbf{F}_{0} \end{bmatrix}$$

where

 $\circ k$ – Iteration

• Using the global strategy

$$\begin{bmatrix} \mathbf{A} & 0 \\ 0 & \mathbf{B} \end{bmatrix} \begin{bmatrix} \mathbf{X}_{\mathsf{r}^{k}} \\ \mathbf{X}_{\mathsf{e}^{k}} \end{bmatrix} = -\begin{bmatrix} \mathbf{C}_{1} & \mathbf{C}_{2} \\ \mathbf{C}_{1} & \mathbf{C}_{2} \end{bmatrix} \begin{bmatrix} \mathbf{X}_{\mathsf{r}^{k-1}} \\ \mathbf{X}_{\mathsf{e}^{k-1}} \end{bmatrix} + \begin{bmatrix} \mathbf{G}_{0} + \mathbf{F}_{0} \\ \mathbf{F}_{0} \end{bmatrix}$$

where

- *k*− lteration
- A, B are sparse
- C_1, C_2 are not sparse

Solvation Models ddLPB Method ddLPB Derivation Computation of Forces Numerical Studies Conclusions and Outlook

• Energy for LPB equations¹

$$E_{\rm s} = \frac{1}{2} \langle \psi_{\rm r}, \rho_{\rm M} \rangle = \frac{1}{2} \sum_{j=1}^{\rm M} \langle {\rm X}, {\rm Q} \rangle_j,$$

where,

$$[\mathsf{Q}]_{j\ell} = \begin{cases} \mathsf{q}_j \delta_{\ell 0}, & \text{if } 1 \leq j \leq \mathsf{M}, \\ 0 & \text{if } \mathsf{M} < j \leq 2\mathsf{M}. \end{cases}$$

and

$$\langle X, Q \rangle_j = \sum_{\ell} [X]_{j\ell} [Q]_{j\ell} \,.$$

¹Fogolari, Brigo, Molinari: JMR 15, 2002

Abhinav Jha

Solvation Models ddLPB Method ddLPB Derivation Computation of Forces Numerical Studies Conclusions and Outlook

• Force with respect to λ

$$F_{\lambda} = \nabla^{\lambda} (E_{s}) = \frac{1}{2} \left(\left\langle \nabla^{\lambda} X, Q \right\rangle + \left\langle X, \nabla^{\lambda} Q \right\rangle \right) = \frac{1}{2} \left\langle \nabla^{\lambda} X, Q \right\rangle$$

Solvation Models ddLPB Method ddLPB Derivation Computation of Forces Numerical Studies Conclusions and Outlook

• Force with respect to λ

$$F_{\lambda} = \nabla^{\lambda} (E_{s}) = \frac{1}{2} \left(\left\langle \nabla^{\lambda} X, Q \right\rangle + \left\langle X, \nabla^{\lambda} Q \right\rangle \right) = \frac{1}{2} \left\langle \nabla^{\lambda} X, Q \right\rangle$$

• LX = g be the ddLPB system

$$\begin{aligned} \nabla^{\lambda} \mathbf{L} X + \mathbf{L} \nabla^{\lambda} X &= \nabla^{\lambda} g \\ \nabla^{\lambda} X &= \mathbf{L}^{-1} \left(\nabla^{\lambda} g - \nabla^{\lambda} \mathbf{L} X \right). \end{aligned}$$

Solvation Models ddLPB Method ddLPB Derivation Computation of Forces Numerical Studies Conclusions and Outlook

• Force with respect to λ

$$F_{\lambda} = \nabla^{\lambda} (E_{s}) = \frac{1}{2} \left(\left\langle \nabla^{\lambda} X, Q \right\rangle + \left\langle X, \nabla^{\lambda} Q \right\rangle \right) = \frac{1}{2} \left\langle \nabla^{\lambda} X, Q \right\rangle$$

• LX = g be the ddLPB system

$$\begin{aligned} \nabla^{\lambda} \mathbf{L} X + \mathbf{L} \nabla^{\lambda} X &= \nabla^{\lambda} g \\ \nabla^{\lambda} X &= \mathbf{L}^{-1} \left(\nabla^{\lambda} g - \nabla^{\lambda} \mathbf{L} X \right). \end{aligned}$$

• Substituting $\nabla^{\lambda} X$

$$\begin{split} F_{\lambda} &= \frac{1}{2} \left\langle \mathsf{L}^{-1} \left(\nabla^{\lambda} \mathsf{g} - \nabla^{\lambda} \mathsf{L} \mathsf{X} \right), \mathsf{Q} \right\rangle \\ &= \frac{1}{2} \left\langle \left(\nabla^{\lambda} \mathsf{g} - \nabla^{\lambda} \mathsf{L} \mathsf{X} \right), \left(\mathsf{L}^{-1} \right)^{*} \mathsf{Q} \right\rangle \\ &= \frac{1}{2} \left\langle \left(\nabla^{\lambda} \mathsf{g} - \nabla^{\lambda} \mathsf{L} \mathsf{X} \right), \mathsf{X}_{\mathrm{adj}} \right\rangle \end{split}$$

Solvation Models ddLPB Method ddLPB Derivation Computation of Forces Numerical Studies Conclusions and Outlook

• Accuracy of the Discretisation

¹ Mikhalev,Nottoli, Stamm: JCP : 157(11),114103 , 2022 ² Jurrus et. al. : Protein Sci. 27 (1), 112-128, 2018

³Geng,Kransy: JCP, 247, 62-78, 2013

Abhinav Jha

- Accuracy of the Discretisation
 - Analytical Forces vs Finite Difference

³Geng,Kransy: JCP, 247, 62-78, 2013

Abhinav Jha

¹ Mikhalev,Nottoli, Stamm: JCP : 157(11),114103 , 2022 ² Jurrus et. al. : Protein Sci. 27 (1), 112-128, 2018

- Accuracy of the Discretisation
 - Analytical Forces vs Finite Difference

$$\mathsf{D}_h[\mathsf{E}_s](\lambda) = rac{\mathsf{E}_s(\lambda+h) - \mathsf{E}_s(\lambda)}{h}$$

¹ Mikhalev,Nottoli, Stamm: JCP : 157(11),114103 , 2022 ² Jurrus et. al. : Protein Sci. 27 (1), 112-128, 2018

³Geng,Kransy: JCP, 247, 62-78, 2013

Abhinav Jha

- Accuracy of the Discretisation
 - Analytical Forces vs Finite Difference

$$\mathsf{D}_{h}[\mathsf{E}_{\mathsf{s}}](\lambda) = rac{\mathsf{E}_{\mathsf{s}}(\lambda+h) - \mathsf{E}_{\mathsf{s}}(\lambda)}{h}$$

 $-\ell^{\infty}$ error, ℓ^2 error

¹ Mikhalev,Nottoli, Stamm: JCP : 157(11),114103 , 2022 ² Jurrus et. al. : Protein Sci. 27 (1), 112-128, 2018 ³ Geng,Kransy: JCP, 247, 62-78, 2013

- Accuracy of the Discretisation
 - Analytical Forces vs Finite Difference

$$D_h[E_s](\lambda) = \frac{E_s(\lambda+h) - E_s(\lambda)}{h}$$

 $-\ell^\infty$ error, ℓ^2 error

Accuracy of Energy and Forces using FMM¹

³Geng,Kransy: JCP, 247, 62-78, 2013

¹Mikhalev,Nottoli, Stamm: JCP : 157(11),114103 , 2022

² Jurrus et. al. : Protein Sci. 27 (1), 112-128, 2018

- Accuracy of the Discretisation
 - Analytical Forces vs Finite Difference

$$D_h[E_s](\lambda) = \frac{E_s(\lambda+h) - E_s(\lambda)}{h}$$

 $- \ \ell^\infty$ error, ℓ^2 error

- Accuracy of Energy and Forces using FMM¹
- Complexity of the Discretisation

³Geng,Kransy: JCP, 247, 62-78, 2013

Abhinav Jha

¹Mikhalev,Nottoli, Stamm: JCP : 157(11),114103 , 2022

² Jurrus et. al. : Protein Sci. 27 (1), 112-128, 2018

- Accuracy of the Discretisation
 - Analytical Forces vs Finite Difference

$$\mathsf{D}_{\mathsf{h}}[\mathsf{E}_{\mathsf{s}}](\lambda) = rac{\mathsf{E}_{\mathsf{s}}(\lambda + \mathsf{h}) - \mathsf{E}_{\mathsf{s}}(\lambda)}{\mathsf{h}}$$

 $- \ \ell^\infty$ error, ℓ^2 error

- Accuracy of Energy and Forces using FMM¹
- Complexity of the Discretisation
 - Scaling of ddLPB

¹ Mikhalev,Nottoli, Stamm: JCP : 157(11),114103 , 2022 ² Jurrus et. al. : Protein Sci. 27 (1), 112-128, 2018

³Geng,Kransy: JCP, 247, 62-78, 2013

Abhinav Jha

- Accuracy of the Discretisation
 - Analytical Forces vs Finite Difference

$$\mathsf{D}_{\mathsf{h}}[\mathsf{E}_{\mathsf{s}}](\lambda) = rac{\mathsf{E}_{\mathsf{s}}(\lambda + \mathsf{h}) - \mathsf{E}_{\mathsf{s}}(\lambda)}{\mathsf{h}}$$

 $- \ \ell^\infty$ error, ℓ^2 error

- Accuracy of Energy and Forces using FMM¹
- Complexity of the Discretisation
 - Scaling of ddLPB
 - Comparison with other software^{2,3}

¹Mikhalev,Nottoli, Stamm: JCP : 157(11),114103 , 2022

² Jurrus et. al. : Protein Sci. 27 (1), 112-128, 2018

³Geng,Kransy: JCP, 247, 62-78, 2013

Abhinav Jha

Overview of ddLPB method, 8th December 2022

27

• Constants in the Model

• $\varepsilon_1 = 1, \varepsilon_2 = 78.54$ • $\kappa = 0.104 \text{ Å}^{-1}$

¹Herbst, J., Lipparini, Mikhalev, Notolli, Stamm, ddX: https://github.com/ddsolvation/ddX

28

• Constants in the Model

- $\varepsilon_1 = 1, \varepsilon_2 = 78.54$ • $\kappa = 0.104 \text{ Å}^{-1}$
- Stopping Criteria¹
 - Outer Tol= 10^{-8}
 - Inner Tol= 10^{-10}

¹Herbst, J., Lipparini, Mikhalev, Notolli, Stamm, ddX: https://github.com/ddsolvation/ddX

- Constants in the Model
 - $\varepsilon_1 = 1, \, \varepsilon_2 = 78.54$
 - $\kappa = 0.104 \text{ Å}^{-1}$
- Stopping Criteria¹
 - Outer Tol= 10^{-8}
 - Inner Tol= 10^{-10}
- Two setups
 - Onthefly: Without storing the matrices
 - Incore: Storing the matrices

¹Herbst, J., Lipparini, Mikhalev, Notolli, Stamm, ddX: https://github.com/ddsolvation/ddX

28

- Constants in the Model
 - $\varepsilon_1 = 1, \, \varepsilon_2 = 78.54$
 - $\kappa = 0.104 \text{ Å}^{-1}$
- Stopping Criteria¹
 - Outer Tol= 10^{-8}
 - Inner Tol= 10^{-10}
- Two setups
 - Onthefly: Without storing the matrices
 - Incore: Storing the matrices
- Number of cores=10

¹Herbst, J., Lipparini, Mikhalev, Notolli, Stamm, ddX: https://github.com/ddsolvation/ddX

Test Structures²

PDB Code	Μ	Name
1ay3	25	Nodularin
1etn	180	Enterotoxin
1du9	380	Scorpion toxin
1d3w	2049	Ferredoxin
1jvu	3964	Ribonuclease A
1qjt	9046	EH1 domain
1a3n	10087	Human haemoglobin
1ju2	20260	Hydroxynitrile lyase

²Berman et. al. : NAR 28, 235-242, 2000

• Analytical Forces vs Finite Difference

• Relative error of the Energy

• Absolute error of the Energy

Numerical Studies

• Maximum Absolute error of the Forces

Numerical Studies

• Time and Memory for one ddLPB calculation

Numerical Studies

• Comparison with other Software

Conclusions and Outlook

Solvation Models ddLPB Method ddLPB Derivation Computation of Forces Numerical Studies Conclusions and Outlook

Conclusions¹

Formulation of domain decomposition method for LPB equation²

³Herbst, J., Lipparini, Mikhalev, Notolli, Stamm, ddX: https://github.com/ddsolvation/ddX

¹J.,Nottoli, Mikhalev,Quan, Stamm: arXiv : 2203.00552 , 2022

²Quan, Stamm, Maday: SISC 41, B320-B350, 2019

- Conclusions¹
 - Formulation of domain decomposition method for LPB equation²
 - Derivation of analytical forces for the ddLPB numerical method using the adjoint method

³Herbst, J., Lipparini, Mikhalev, Notolli, Stamm, ddX: https://github.com/ddsolvation/ddX

Overview of ddLPB method, 8th December 2022

¹J.,Nottoli, Mikhalev,Quan, Stamm: arXiv : 2203.00552 , 2022

²Quan, Stamm, Maday: SISC 41, B320–B350, 2019

- Conclusions¹
 - Formulation of domain decomposition method for LPB equation²
 - Derivation of analytical forces for the ddLPB numerical method using the adjoint method
 - Implementation of the energy and forces validated by numerical simulation³

³Herbst, J., Lipparini, Mikhalev, Notolli, Stamm, ddX: https://github.com/ddsolvation/ddX

¹J.,Nottoli, Mikhalev,Quan, Stamm: arXiv : 2203.00552 , 2022

²Quan, Stamm, Maday: SISC 41, B320–B350, 2019

- Conclusions¹
 - Formulation of domain decomposition method for LPB equation²
 - Derivation of analytical forces for the ddLPB numerical method using the adjoint method
 - Implementation of the energy and forces validated by numerical simulation³
 - Current implementation scales linearly with number of atoms

³Herbst, J., Lipparini, Mikhalev, Notolli, Stamm, ddX: https://github.com/ddsolvation/ddX

¹J.,Nottoli, Mikhalev,Quan, Stamm: arXiv : 2203.00552 , 2022

²Quan, Stamm, Maday: SISC 41, B320–B350, 2019

- Conclusions¹
 - Formulation of domain decomposition method for LPB equation²
 - Derivation of analytical forces for the ddLPB numerical method using the adjoint method
 - Implementation of the energy and forces validated by numerical simulation³
 - Current implementation scales linearly with number of atoms
- Outlook
 - Extending to non-linear PB equation

³Herbst, J., Lipparini, Mikhalev, Notolli, Stamm, ddX: https://github.com/ddsolvation/ddX

¹J.,Nottoli, Mikhalev,Quan, Stamm: arXiv : 2203.00552 , 2022

²Quan, Stamm, Maday: SISC 41, B320–B350, 2019

- Conclusions¹
 - Formulation of domain decomposition method for LPB equation²
 - Derivation of analytical forces for the ddLPB numerical method using the adjoint method
 - Implementation of the energy and forces validated by numerical simulation³
 - Current implementation scales linearly with number of atoms
- Outlook
 - Extending to non-linear PB equation
 - Considering different surfacing of the molecules

³Herbst, J., Lipparini, Mikhalev, Notolli, Stamm, ddX: https://github.com/ddsolvation/ddX

Overview of ddLPB method, 8th December 2022

¹J.,Nottoli, Mikhalev,Quan, Stamm: arXiv : 2203.00552 , 2022

²Quan, Stamm, Maday: SISC 41, B320–B350, 2019