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• Ionic Solvation Models 1

◦ Explicit Solvation Models
− Adopts molecular representation of both solute and

solvent

− Accurate results

− Computationally expensive

◦ Implicit Solvation Models 2,3

− Microscopic treatment of solute

− Macroscopic treatment of solvent using physical

properties

− Less computational cost

1
Zhang et. al.: JCTC, 13, 1034-1043, 2017

2
Tomasci, Persico: CR 94, 2027-2094, 1994

3
Honig, Nicholls: Sci. 268, 1144-1149, 1995
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ε = ε2

ε = ε1

Ω
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O C

H

H

Figure 1: Formaldehyde molecule
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• Linear Poisson-Boltzman (LPB) equation

−∇ · [ε(x)∇ψ(x)] + κ̄(x)2ψ(x) = 4πρM(x) in R3

◦ ψ(x)− Electrostatic potential

◦ ε(x)− Space-dependent dielectric permittivity

ε(x) =

{
ε1 in Ω,

ε2 in ΩC := R3 \ Ω

◦ Ω− Solute Cavity
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◦ κ̄(x)−Modified Debye-Hückel parameter

κ̄(x) =

{
0 in Ω,
√
ε2κ in ΩC

◦ κ− Debye-Hückel screening constant

◦ ρM(x)− Solute charge distribution

ρM(x) =
M∑
i=1

qiδ(x − xi)

◦ M− Number of solute atoms
◦ qi− Partial charge on the ith atom
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• Boundary Element Method (BEM) 1

• Finite Difference Method (FDM)2

• Finite Element Method (FEM)3

• Domain Decomposition Methods 4,5,6

◦ Schwarz decomposition method
◦ Does not rely on mesh but quadrature points7
◦ Computation of forces becomes natural as spheres are
centered at nucleus position

1
Yoon, Lehnoff: JCC 11, 1080–1086, 1990

2
Madura et.al.: CPC 91, 57–95, 1995

3
Chen, Holst, Xu: SINUM 45, 2295–2320, 2007

4
Cancés, Maday, Stamm: JCP 139, 054111, 2013

5
Lipparini et.al.: JCP 141, 184108, 2014

6
Quan, Stamm, Maday: SISC 41, B320–B350, 2019
7
Lebedev, Laikov: DM 59, 477–481, 1999
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2 Problem Transformation
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• The LPB equation can be written in two equations

−∆ψ(x) =
4π

ε1
ρM(x) in Ω,

−∆ψ(x) + κ2ψ(x) = 0 in ΩC,

with

[[ψ(x)]] = 0 on Γ = ∂Ω,

[[∂n (εψ) (x)]] = 0 on Γ

Abhinav Jha
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• Using potential theory the final equations are

−∆ψr(x) = 0 in Ω,

−∆ψe(x) + κ2ψe(x) = 0 in Ω,

with

ψ0 + ψr = ψe on Γ,

σe = ∂nψe − ε1
ε2
∂n(ψ0 + ψr) on Γ1

where

◦ ψr− Reaction potential in Ω
◦ ψ0− Potential generated by ρM satisfying,

−∆ψ0 =
4π

ε1
ρM

1
Sauter, Schwab, Springer, Berlin-2011, Thm. 3.3.1
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◦ ψe− Extended potential from ΩC to Ω
◦ σe− Charge density generating ψe satisfying

Sκσe(x) :=

∫
Γ

exp (−κ|x − y|)σe(y)
4π|x − y|

= ψe ∀ x ∈ Γ

◦ Sκ− Invertible single-layer potential operator 1

Sκ : H−1/2(Γ) → H1/2(Γ)

1
Sauter, Schwab, Springer, Berlin-2011, 101-181
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2 ddLPB-Method
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−∆ψ = 4π
ε1
ρM

−∆ψ + κ2ψ = 0

[[ψ]] = 0

[[∂nψ]] = 0 ΩC

Ω

Γ

−∆ψr = 0 in Ω

ψr + ψ0 = g on Γ

−∆ψe + κ2ψe = 0 in Ω

ψe = g on Γ

g : Sκ
(
∂nψe − ε1

ε2
∂n (ψr + ψ0)

)
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2 Global strategy

Solvation Models ddLPB Method ddLPB Derivation Computation of Forces Numerical Studies Conclusions and Outlook

Set k = 1, Choose Tol
Define g0 on Γ

−∆ψr
k = 0 in Ω

ψr
k = gk−1 − ψ0 on Γ

−∆ψe
k + κ2ψe

k = 0 in Ω
ψe
k = gk−1 on Γ

σe = ∂nψe
k − ε1

ε2
∂n(ψ0 + ψr

k)

Compute gk = Sκσe
k

Compute solvation energy Esk

|Esk−Esk−1|
|Esk|

< Tol Done

k = k + 1

Yes
No
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3 Domain Decomposition Scheme
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• According to definition of Ω

Ω =

M⋃
j=1

Ωj, Ωj = Brj(xj)

• Laplace equation restricted to Ωj

−∆ψr|Ωj = 0 in Ωj,

ψr|Γj = φr,j on Γj

where

φr,j =

{
ψr on Γij,

g − ψ0 on Γe
j

Abhinav Jha
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• HSP equation restricted to Ωj

−∆ψe|Ωj + κ2ψe|Ωj = 0 in Ωj,

ψe|Γj = φe,j on Γj

where

φe,j =

{
ψe on Γij,

g on Γe
j

and

Ωj

Γi
j
= Ω ∩ Γj

Γe
j
= Γ ∩ Γj

Figure 2: 2-D schematic diagram of Γij and Γ
e
j
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3 Single Domain Solvers

Solvation Models ddLPB Method ddLPB Derivation Computation of Forces Numerical Studies Conclusions and Outlook

• Laplace equation in unit ball

−∆ur = 0 in B1(0),

ur = φr on S2

• Unique solution in H1(B1(0))

ur(r, θ, ϕ) =

∞∑
`=0

∑̀
m=−`

[φr]
m
` r
`Ym` (θ, ϕ)

for 0 ≤ r ≤ 1, 0 ≤ θ ≤ π, 0 ≤ ϕ < 2π

where

◦ Ym` − (Real orthonormal) spherical harmonics of degree ` and
orderm on S2

◦ [φr]
m
` − Real coefficient of ur corresponding to Ym`

[φr]
m
` =

∫
S2
φr(s)Y

m
` (s)ds
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• ur can be numerically approximated by ũr

ũr(r, θ, ϕ) =

`max∑
`=0

∑̀
m=−`

[
φ̃r

]m
`
r`Ym` (θ, ϕ)

for 0 ≤ r ≤ 1, 0 ≤ θ ≤ π, 0 ≤ ϕ < 2π

where

◦ `max−Maximum degree of Ym`
◦

[
φ̃r

]m
`
− Numerical approximation of [φr]m`[

φ̃r

]m
`
=

Nleb∑
n=1

ωlebn φr(sn)Y
m
` (sn)

◦ sn ∈ S2− Lebedev quadrature points
◦ ωlebn − Lebedev quadrature weights
◦ Nleb− Number of Lebedev quadrature points

Abhinav Jha
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• HSP equation in unit ball

−∆ue + κ2u2e = 0 in B1(0),

ue = φe on S2

• Unique solution

ue(r, θ, ϕ) =

∞∑
`=0

∑̀
m=−`

[φe]
m
` i`(r)Y

m
` (θ, ϕ)

for 0 ≤ r ≤ 1, 0 ≤ θ ≤ π, 0 ≤ ϕ < 2π

where

◦ [φe]
m
` − Coefficient of Ym`

◦ i`(r)− Bessel functions of the first kind
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3 Reformulation

Solvation Models ddLPB Method ddLPB Derivation Computation of Forces Numerical Studies Conclusions and Outlook

• Rewriting the coupling equations as

ψr|Γj(x)−
∑
i6=j

ωji(x)ψr|Ωi(x) = χej (x)(g(x)− ψ0(x)) ∀x ∈ Γj

and

ψe|Γj(x)−
∑
i6=j

ωji(x)ψe|Ωi(x) = χej (x)g(x) ∀x ∈ Γj

where

◦ χe
j
(x) :=

{
1 if x ∈ Γe

j
,

0 if x ∈ Γij.
, ωji(x) :=

χi(x)∑
k 6=j χk(x)

◦ χe
j
(x) = 1−

∑
i6=j ωji(x) ∀x ∈ Γj
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• Reformulating the global coupling condition over each sphere Γi

g(x) =

M∑
i=1

S̃κ,Γi

[
χei

(
∂nψe −

ε1
ε2
∂n(ψ0 + ψr)

)]
(x) ∀x ∈ Γ

where

◦
S̃κ,Γiσe(x) :=

∫
Γi

exp(−κ|x − y|)σe(y)
4π|x − y|

∀x ∈ R3
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• Using x
(
∈ Γj

)
= xj + rjs for s ∈ S2, the coupling equation is

ψr|Γj(xj + rjs)−
∑
i6=j

ωji(xj + rjs)ψr|Ωi(xj + rjs)

= χej (xj + rjs)
(
g(xj + rjs)− ψ0(xj + rjs)

)
• Multiplying by Ym` and integrating over S2〈

ψr|Γj(xj + rj•)−
∑
i6=j

ωji(xj + rj•)ψr|Ωi(xj + rj•),Y
m
` (•)

〉
S2

=
〈
χej (xj + rj•)

(
g(xj + rj•)− ψ0(xj + rj•)

)
,Ym` (•)

〉
S2

∀ j, `,m
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• Moving from unit ball to Ωi

ψr|Ωi(xi + rs) =
`max∑
`′=0

`′∑
m′=−`′

[Xr]i`′m′

(
r

ri

)`′
Ym

′
`′ (s), 0 ≤ r ≤ ri, s ∈ S2

and

∂nψr(xi + rs) =

`max∑
`′=0

`′∑
m′=−`′

[Xr]i`′m′

(
`′

ri

)
Ym

′
`′ (s), xi + ris ∈ Γei

◦ [Xr]j`m− Unknown coeffecients of the mode Ym`
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• Using Lebedev quadrature the final linear system of equations are

[AXr]j`m = [GX]j`m + [G0]j`m ∀j, `,m

where

◦ A−M(`max + 1)2 ×M(`max + 1)2 matrix

[AXr]j`m = [Xr]j`m −
∑
i6=j

∑
`′,m′Nleb∑

n=1

ωlebn ωji(xj + rjsn)

(
rijn

ri

)`′
Ym

′
`′ (sijn)Y

m
` (sn)


× [Xr]i`′m′

◦ (rijn, sijn)− Spherical coordinates of xj + rjsn associated with Γi
xj + rjsn = xi + rijnsijn with sijn ∈ S2
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◦ [GX]jlm =
∑Nleb
n=1 ω

leb
n χe

j
(xj + rjsn)g(xj + rjsn)Y

m
` (sn)

◦ [G0]jlm = −
∑Nleb
n=1 ω

leb
n χe

j
(xj + rjsn)ψ0(xj + rjsn)Y

m
` (sn)

• Similarly for the 2nd coupling equation

[BXe]j`m = [GX]j`m ∀j, `,m

where

◦

[BXe]j`m = [Xe]j`m −
∑
i6=j

∑
`′,m′Nleb∑

n=1

ωlebn ωji(xj + rjsn)

(
i`′(rijn)

i`′(ri)

)
Ym

′
`′ (sijn)Y

m
` (sn)


× [Xe]i`′m′
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• Linear System
LX = g,

where

L =

[
A 0

0 B

]
, X =

[
Xr

Xe

]
, and g =

[
GX + G0

GX

]

• Using definition of g

GX = F0 − C1Xr − C2Xe

where

◦ F0− Associated with ∂nψ0

◦ C1− Associated with ∂nψr
◦ C2− Associated with ∂nψe
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• Using the global strategy[
A 0

0 B

][
Xr
k

Xe
k

]
= −

[
C1 C2

C1 C2

][
Xr
k−1

Xe
k−1

]
+

[
G0 + F0

F0

]

where

◦ k− Iteration

• A,B are sparse

• C1,C2 are not sparse
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• Energy for LPB equations1

Es =
1

2
〈ψr, ρM〉 =

1

2

M∑
j=1

〈X,Q〉j ,

where,

[Q]j` =

{
qjδ`0, if 1 ≤ j ≤ M,
0 ifM < j ≤ 2M.

and

〈X,Q〉j =
∑
`

[X]j` [Q]j` .

1
Fogolari, Brigo, Molinari: JMR 15, 2002
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• Force with respect to λ

Fλ = ∇λ (Es) =
1

2

(〈
∇λX,Q

〉
+
〈
X,∇λQ

〉)
=

1

2

〈
∇λX,Q

〉

• LX = g be the ddLPB system

∇λLX + L∇λX = ∇λg

∇λX = L−1
(
∇λg −∇λLX

)
.

• Substituting ∇λX

Fλ =
1

2

〈
L−1

(
∇λg −∇λLX

)
,Q

〉
=

1

2

〈(
∇λg −∇λLX

)
,
(
L−1

)∗
Q
〉

=
1

2

〈(
∇λg −∇λLX

)
,Xadj

〉
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• Accuracy of the Discretisation

◦ Analytical Forces vs Finite Difference

Dh[Es](λ) =
Es(λ+ h)− Es(λ)

h

− `∞ error, `2 error

◦ Accuracy of Energy and Forces using FMM1

• Complexity of the Discretisation
◦ Scaling of ddLPB
◦ Comparison with other software2,3

1
Mikhalev,Nottoli, Stamm: JCP : 157(11),114103 , 2022
2
Jurrus et. al. : Protein Sci. 27 (1), 112-128, 2018

3
Geng,Kransy: JCP, 247, 62-78, 2013
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• Constants in the Model
◦ ε1 = 1, ε2 = 78.54
◦ κ = 0.104 Å−1

• Stopping Criteria1

◦ Outer Tol= 10−8

◦ Inner Tol= 10−10

• Two setups
◦ Onthefly: Without storing the matrices
◦ Incore: Storing the matrices

• Number of cores=10

1
Herbst, J., Lipparini, Mikhalev, Notolli, Stamm, ddX: https://github.com/ddsolvation/ddX
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• Test Structures2

PDB Code M Name

1ay3 25 Nodularin

1etn 180 Enterotoxin

1du9 380 Scorpion toxin

1d3w 2049 Ferredoxin

1jvu 3964 Ribonuclease A

1qjt 9046 EH1 domain

1a3n 10087 Human haemoglobin

1ju2 20260 Hydroxynitrile lyase

2
Berman et. al. : NAR 28, 235-242, 2000
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• Analytical Forces vs Finite Difference
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• Relative error of the Energy
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• Absolute error of the Energy
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• Maximum Absolute error of the Forces
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• Time and Memory for one ddLPB calculation
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• Comparison with other Software
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• Conclusions1

◦ Formulation of domain decomposition method for LPB
equation2

◦ Derivation of analytical forces for the ddLPB numerical
method using the adjoint method

◦ Implementation of the energy and forces validated by
numerical simulation3

◦ Current implementation scales linearly with number of atoms
• Outlook

◦ Extending to non-linear PB equation
◦ Considering different surfacing of the molecules

1
J.,Nottoli, Mikhalev,Quan, Stamm: arXiv : 2203.00552 , 2022
2
Quan, Stamm, Maday: SISC 41, B320–B350, 2019
3
Herbst, J., Lipparini, Mikhalev, Notolli, Stamm, ddX: https://github.com/ddsolvation/ddX
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