# Domain Decomposition Method for Poisson Boltzmann Equation

Abhinav Jha

Indian Institute of Technology, Gandhinagar

GANIT Seminar 4<sup>th</sup> November 2024

Joint work with: Prof. Dr. Benjamin Stamm, Universität Stuttgart



Abhinav Jha ddNPB-SES, 4<sup>th</sup> November 2024



- 1 Why Study Computational Chemistry?
- 2 Model Problem
- 3 ddPB Method
- 4 ddPB Derivation
- **5** Numerical Studies
- 6 Conclusions and Outlook





|                              | Web of Science | MathSciNet |  |
|------------------------------|----------------|------------|--|
| Navier Stokes<br>Equations   | 43737          |            |  |
| Density Functional<br>Theory |                |            |  |





|                              | Web of Science | MathSciNet |  |
|------------------------------|----------------|------------|--|
| Navier Stokes<br>Equations   | 43737          | 18481      |  |
| Density Functional<br>Theory |                |            |  |





|                              | Web of Science | MathSciNet |        |
|------------------------------|----------------|------------|--------|
| Navier Stokes<br>Equations   | 43737          | 18481      | 42.23% |
| Density Functional<br>Theory |                |            |        |





|                              | Web of Science | MathSciNet |        |
|------------------------------|----------------|------------|--------|
| Navier Stokes<br>Equations   | 43737          | 18481      | 42.23% |
| Density Functional<br>Theory | 257888         |            |        |





|                              | Web of Science | MathSciNet |        |
|------------------------------|----------------|------------|--------|
| Navier Stokes<br>Equations   | 43737          | 18481      | 42.23% |
| Density Functional<br>Theory | 257888         | 480        |        |





|                              | Web of Science | MathSciNet |        |
|------------------------------|----------------|------------|--------|
| Navier Stokes<br>Equations   | 43737          | 18481      | 42.23% |
| Density Functional<br>Theory | 257888         | 480        | 0.19%  |





## Solvation Models

- Ionic Solvation Models<sup>1</sup>
  - Explicit Solvation Models
    - Adopts molecular representation of both solute and solvent
    - Accurate results
    - Computationally expensive

<sup>3</sup>Honig, Nicholls: *Science*, 268 (**5214**), 1144-1149, 1995





<sup>&</sup>lt;sup>1</sup>Zhang et. al.: Journal of Chemical Theory and Computation, 13 (3), 1034-1043, 2017

<sup>&</sup>lt;sup>2</sup> Cances, Mennucci, Tomasi: The Journal of Chemical Physics, 107 (8), 3032-3041, 1997

## Solvation Models

- Ionic Solvation Models<sup>1</sup>
  - Explicit Solvation Models
    - Adopts molecular representation of both solute and solvent
    - Accurate results
    - Computationally expensive
  - Implicit Solvation Models <sup>2,3</sup>
    - Microscopic treatment of solute
    - Macroscopic treatment of solvent using physical properties
    - Less computational cost

<sup>&</sup>lt;sup>3</sup>Honig, Nicholls: *Science*, 268 (**5214**), 1144-1149, 1995





<sup>&</sup>lt;sup>1</sup>Zhang et. al.: Journal of Chemical Theory and Computation, 13 (3), 1034-1043, 2017

<sup>&</sup>lt;sup>2</sup> Cances, Mennucci, Tomasi: The Journal of Chemical Physics, 107 (8), 3032-3041, 1997



Figure 1: Formaldehyde Molecule





• Poisson-Boltzman (PB) Equation <sup>1,2</sup>

$$-\nabla \cdot \left[\varepsilon_{\mathsf{abs}}\varepsilon(\mathbf{x})\nabla \tilde{\psi}(\mathbf{x})\right] = \rho^{\mathsf{sol}}(\mathbf{x}) + \rho^{\mathsf{ions}}(\mathbf{x}) \quad \text{in } \mathbb{R}^3$$

 $\circ \ ilde{\psi}(\mathbf{x})$  : Electrostatic potential

<sup>1</sup> Gouy: Journal of Physics: Theories and Applications, 9 (1), 457-468, 1910 <sup>2</sup> Chapman: Journal of Science, 25 (1), 475-481, 1913





• Poisson-Boltzman (PB) Equation <sup>1,2</sup>

$$-\nabla \cdot \left[\varepsilon_{\mathsf{abs}}\varepsilon(\mathbf{x})\nabla \tilde{\psi}(\mathbf{x})\right] = \rho^{\mathsf{sol}}(\mathbf{x}) + \rho^{\mathsf{ions}}(\mathbf{x}) \quad \text{in } \mathbb{R}^3$$

•  $\tilde{\psi}(\mathbf{x})$  : Electrostatic potential •  $\varepsilon(\mathbf{x})$  : Relative space-dependent dielectric permittivity

<sup>&</sup>lt;sup>1</sup> Gouy: Journal of Physics: Theories and Applications, 9 (1), 457-468, 1910 <sup>2</sup> Chapman: Journal of Science, 25 (1), 475-481, 1913





• Poisson-Boltzman (PB) Equation <sup>1,2</sup>

$$-\nabla \cdot \left[\varepsilon_{\mathsf{abs}}\varepsilon(\mathbf{x})\nabla \tilde{\psi}(\mathbf{x})\right] = \rho^{\mathsf{sol}}(\mathbf{x}) + \rho^{\mathsf{ions}}(\mathbf{x}) \quad \text{in } \mathbb{R}^3$$

 $\begin{array}{l} \circ ~~ \tilde{\psi}(\mathbf{x}) : \text{Electrostatic potential} \\ \circ ~~ \varepsilon(\mathbf{x}) : \text{Relative space-dependent dielectric permittivity} \\ \circ ~~ \rho^{\text{sol}}(\mathbf{x}) : \text{Solute charge distribution} \end{array}$ 

$$\rho^{\rm sol}(\mathbf{x}) = \sum_{i=1}^{\sf M} q_i \delta(\mathbf{x} - \mathbf{x}_i)$$

- M : Number of solute atoms -  $q_i$  : Total charge on the  $i^{\text{th}}$  atom

<sup>1</sup> Gouy: Journal of Physics: Theories and Applications, 9 (1), 457-468, 1910 <sup>2</sup> Chapman: Journal of Science, 25 (1), 475-481, 1913





 $\circ \rho^{\text{ions}}(\mathbf{x})$  : Ionic charge distribution (Boltzmann distribution)

$$\rho^{\text{ions}}(\mathbf{x}) = \sum_{i=1}^{N_{\text{ions}}} z_i e \lambda(\mathbf{x}) c_i^{\infty} \exp\left(\frac{-z_i e \tilde{\psi}(\mathbf{x})}{K_{\text{B}} T}\right)$$

<sup>&</sup>lt;sup>1</sup>Stein, Herbert, Head-Gordon: The Journal of Chemical Physics, 151 (22), 224111, 2019





 $\circ \rho^{\text{ions}}(\mathbf{x})$  : Ionic charge distribution (Boltzmann distribution)

$$\rho^{\text{ions}}(\mathbf{x}) = \sum_{i=1}^{N_{\text{ions}}} z_i e \lambda(\mathbf{x}) c_i^{\infty} \exp\left(\frac{-z_i e \tilde{\psi}(\mathbf{x})}{K_{\text{B}} T}\right)$$

• For 1:1 ionic solution<sup>1</sup>

$$ho^{\mathsf{ions}}(\mathbf{x}) = -2\mathsf{ce}\lambda(\mathbf{x})\sinh\left(rac{e ilde{\psi}(\mathbf{x})}{K_{\mathsf{B}}\mathsf{T}}
ight)$$

 $-\lambda(\mathbf{x})$ : Ion-exclusion function

<sup>&</sup>lt;sup>1</sup>Stein, Herbert, Head-Gordon: The Journal of Chemical Physics, 151 (22), 224111, 2019





• For 1:1 solution Poisson-Boltzman (PB) Equation

$$-\nabla \cdot \left[\varepsilon_{\mathsf{abs}}\varepsilon(\mathbf{x})\nabla \tilde{\psi}(\mathbf{x})\right] + 2ec\lambda(\mathbf{x})\sinh\left(\frac{e\tilde{\psi}(\mathbf{x})}{K_{\mathsf{B}}T}\right) = \rho^{\mathsf{sol}}(\mathbf{x}) \quad \text{in } \ \mathbb{R}^{3}$$

<sup>1</sup>Debye, Hückel: Physikalische Zeitschrift, 24 (9), 185-206, 1923





• For 1:1 solution Poisson-Boltzman (PB) Equation

$$-\nabla \cdot \left[\varepsilon_{\mathsf{abs}}\varepsilon(\mathbf{x})\nabla \tilde{\psi}(\mathbf{x})\right] + 2ec\lambda(\mathbf{x})\sinh\left(\frac{e\tilde{\psi}(\mathbf{x})}{\mathsf{K}_{\mathsf{B}}\mathsf{T}}\right) = \rho^{\mathsf{sol}}(\mathbf{x}) \quad \text{in } \ \mathbb{R}^{3}$$

• Dimensionless Poisson-Boltzman (PB) Equation

$$-\nabla \cdot [\varepsilon(\mathbf{x})\nabla\psi(\mathbf{x})] + \kappa^2 \varepsilon_{\rm s}\lambda(\mathbf{x})\sinh\left(\psi(\mathbf{x})\right) = \frac{1}{\beta\varepsilon_{\rm abs}}\rho^{\rm sol}(\mathbf{x}) \quad \text{in } \ \mathbb{R}^3$$

<sup>1</sup>Debye, Hückel: Physikalische Zeitschrift, 24 (9), 185-206, 1923





• For 1:1 solution Poisson-Boltzman (PB) Equation

$$-\nabla \cdot \left[\varepsilon_{\mathsf{abs}}\varepsilon(\mathbf{x})\nabla \tilde{\psi}(\mathbf{x})\right] + 2ec\lambda(\mathbf{x})\sinh\left(\frac{e\tilde{\psi}(\mathbf{x})}{K_{\mathsf{B}}\mathsf{T}}\right) = \rho^{\mathsf{sol}}(\mathbf{x}) \quad \text{in } \ \mathbb{R}^{3}$$

• Dimensionless Poisson-Boltzman (PB) Equation

$$-\nabla \cdot [\varepsilon(\mathbf{x})\nabla\psi(\mathbf{x})] + \kappa^2 \varepsilon_s \lambda(\mathbf{x}) \sinh\left(\psi(\mathbf{x})\right) = \frac{1}{\beta \varepsilon_{\mathsf{abs}}} \rho^{\mathsf{sol}}(\mathbf{x}) \quad \text{in } \ \mathbb{R}^3$$

•  $\psi(\mathbf{x}) : \tilde{\psi}(\mathbf{x})\beta$ •  $\kappa$  : Debye Hückel Screening Constant <sup>1</sup> •  $\beta : e/K_{B}T$ 

<sup>1</sup>Debye, Hückel: Physikalische Zeitschrift, 24 (**9**), 185-206, 1923







Figure 2: Solute probes and solute-solvent boundary for a diatmoic molecule.

• vdW: vad-der Waal's Surface

#### Solute Cavity



Figure 2: Solute probes and solute-solvent boundary for a diatmoic molecule.

• SAS: Solvent Accessible Surface



Figure 2: Solute probes and solute-solvent boundary for a diatmoic molecule.

• SES: Solvent Excluded Surface

#### Solute Cavity



Figure 2: Solute probes and solute-solvent boundary for a diatmoic molecule.

## Solute Cavity



Figure 2: Solute probes and solute-solvent boundary for a diatmoic molecule.





## Permittivity and Ion-Exclusion Function

• Dielectric Permittivity Function<sup>1</sup>

$$\varepsilon(\mathbf{x}) = \begin{cases} 1 & \mathbf{x} \in \Omega_{\mathsf{SES}}, \\ 1 + (\varepsilon_{\mathsf{s}} - 1)\xi\left(\frac{f_{\mathsf{SAS}}(\mathbf{x}) + r_{p} + a}{r_{p}}\right) & \mathbf{x} \in \mathcal{L}_{\varepsilon}, \\ \varepsilon_{\mathsf{s}} & \mathsf{else}, \end{cases}$$

Quan, Stamm: Journal of Computational Physics, 322 (1), 760-782, 2016
 Stern: Zeitschrift für Elektrochemie, 30 (508), 21-22, 1924





## Permittivity and Ion-Exclusion Function

• Dielectric Permittivity Function<sup>1</sup>

$$\varepsilon(\mathbf{x}) = \begin{cases} 1 & \mathbf{x} \in \Omega_{\mathsf{SES}}, \\ 1 + (\varepsilon_{\mathsf{s}} - 1)\xi\left(\frac{f_{\mathsf{SAS}}(\mathbf{x}) + \mathbf{r}_{p} + a}{\mathbf{r}_{p}}\right) & \mathbf{x} \in \mathcal{L}_{\varepsilon}, \\ \varepsilon_{\mathsf{s}} & \mathsf{else}, \end{cases}$$

Ion-Exclusion Function<sup>2</sup>

$$\lambda(\mathbf{x}) = \begin{cases} 0 & \mathbf{x} \in \Omega_{\lambda^{-1}} \\ \xi \left( \frac{f_{\mathsf{SAS}}(\mathbf{x}) + \mathbf{r}_p}{\mathbf{r}_p} \right) & \mathbf{x} \in \mathcal{L}_{\lambda}, \\ 1 & \text{else}, \end{cases}$$

<sup>1</sup>Quan, Stamm: Journal of Computational Physics, 322 (1), 760-782, 2016

<sup>2</sup> Stern: Zeitschrift für Elektrochemie, 30 (508), 21-22, 1924





# Permittivity and Ion-Exclusion Function



- C: Constant, NC: Non-Constant
- L: Linear, NL: Non-Linear





• The PB equation can be written in two equations

$$\begin{split} -\nabla \cdot \left[ \varepsilon(\mathbf{x}) \nabla \psi(\mathbf{x}) \right] + \kappa^2 \varepsilon_{\mathsf{s}} \lambda(\mathbf{x}) \sinh\left(\psi(\mathbf{x})\right) &= \frac{1}{\beta \varepsilon_{\mathsf{abs}}} \rho^{\mathsf{sol}}(\mathbf{x}) \qquad \text{in } \Omega_0, \\ -\Delta \psi(\mathbf{x}) + \kappa^2 \psi(\mathbf{x}) &= 0 \qquad \text{in } \Omega^{\mathsf{C}}, \end{split}$$

#### with

$$\begin{split} \llbracket \boldsymbol{\psi} \rrbracket &= 0, \\ \llbracket \partial_{\mathbf{n}} \boldsymbol{\psi} \rrbracket &= 0 \quad \text{on} \quad \Gamma_0 := \partial \Omega_0, \end{split}$$





• Using Potential Theory the final equations are

$$\begin{aligned} -\nabla \cdot \left[ \varepsilon(\mathbf{x}) \nabla \psi_{\mathbf{r}}(\mathbf{x}) \right] + \kappa^2 \varepsilon_{\mathbf{s}} \lambda(\mathbf{x}) \mathcal{F} \left( \psi_{\mathbf{r}} + \psi_0 \right) \left( \psi_{\mathbf{r}} + \psi_0 \right) \left( \mathbf{x} \right) \\ = \nabla \cdot \left[ \left( \varepsilon(\mathbf{x}) - 1 \right) \nabla \psi_0(\mathbf{x}) \right] & \text{in } \Omega_0 \quad [\mathsf{GSP}] \end{aligned}$$





• Using Potential Theory the final equations are

$$\begin{aligned} -\nabla \cdot \left[ \varepsilon(\mathbf{x}) \nabla \psi_{\mathbf{r}}(\mathbf{x}) \right] + \kappa^2 \varepsilon_{\mathbf{s}} \lambda(\mathbf{x}) \mathcal{F} \left( \psi_{\mathbf{r}} + \psi_0 \right) \left( \psi_{\mathbf{r}} + \psi_0 \right) \left( \mathbf{x} \right) \\ = \nabla \cdot \left[ \left( \varepsilon(\mathbf{x}) - 1 \right) \nabla \psi_0(\mathbf{x}) \right] & \text{in } \Omega_0 \quad \text{[GSP]} \end{aligned}$$

$$-\Delta\psi_{\rm e}(\mathbf{x}) + \kappa^2\psi_{\rm e}(\mathbf{x}) = 0 \qquad \text{in } \Omega_0 \qquad [{\rm HSP}]$$





• Using Potential Theory the final equations are

$$\begin{aligned} -\nabla \cdot \left[ \varepsilon(\mathbf{x}) \nabla \psi_{\mathbf{r}}(\mathbf{x}) \right] + \kappa^2 \varepsilon_{\mathbf{s}} \lambda(\mathbf{x}) \mathcal{F} \left( \psi_{\mathbf{r}} + \psi_0 \right) \left( \psi_{\mathbf{r}} + \psi_0 \right) \left( \mathbf{x} \right) \\ = \nabla \cdot \left[ \left( \varepsilon(\mathbf{x}) - 1 \right) \nabla \psi_0(\mathbf{x}) \right] & \text{in } \Omega_0 \quad \text{[GSP]} \end{aligned}$$

$$-\Delta \psi_{\mathsf{e}}(\mathbf{x}) + \kappa^2 \psi_{\mathsf{e}}(\mathbf{x}) = 0 \quad \text{in } \Omega_0 \quad [\mathsf{HSP}]$$

with

$$\begin{split} \psi_0 + \psi_{\mathsf{r}} &= \psi_{\mathsf{e}} \quad \text{on } \Gamma_0, \\ \psi_{\mathsf{e}} &= \mathbf{S}_{\kappa} \sigma_{\mathsf{e}} \qquad \text{on } \Gamma_0 \end{split}$$





• Using Potential Theory the final equations are

$$\begin{aligned} -\nabla \cdot \left[ \varepsilon(\mathbf{x}) \nabla \psi_{\mathbf{r}}(\mathbf{x}) \right] + \kappa^2 \varepsilon_{\mathbf{s}} \lambda(\mathbf{x}) \mathcal{F} \left( \psi_{\mathbf{r}} + \psi_0 \right) \left( \psi_{\mathbf{r}} + \psi_0 \right) \left( \mathbf{x} \right) \\ = \nabla \cdot \left[ \left( \varepsilon(\mathbf{x}) - 1 \right) \nabla \psi_0(\mathbf{x}) \right] & \text{in } \Omega_0 \quad \text{[GSP]} \end{aligned}$$

$$-\Delta\psi_{\mathsf{e}}(\mathbf{x}) + \kappa^{2}\psi_{\mathsf{e}}(\mathbf{x}) = 0 \quad \text{in } \Omega_{0} \quad [\mathsf{HSP}]$$

with

$$\begin{split} \psi_0 + \psi_{\mathsf{r}} &= \psi_{\mathsf{e}} \quad \text{on } \Gamma_0, \\ \psi_{\mathsf{e}} &= \mathbf{S}_{\kappa} \sigma_{\mathsf{e}} \qquad \text{on } \Gamma_0 \end{split}$$

#### where

- $\circ \psi_{\mathbf{r}}$  : Reaction potential in  $\Omega$
- $\circ \ \psi_0$  : Potential generated by  $ho_{\mathsf{M}}$  satisfying,

$$-\Delta\psi_0=\frac{1}{\beta\varepsilon_{\rm abs}}\rho_{\rm M}$$





## • $\psi_{\mathsf{e}}$ : Extended potential from $\Omega^{\mathsf{C}}$ to $\Omega_0$

<sup>1</sup>Sauter, Schwab, Springer, Berlin-2011, 101-181





• 
$$\psi_{\mathsf{e}}$$
 : Extended potential from  $\Omega^{\mathsf{C}}$  to  $\Omega_{0}$   
•  $\mathcal{F}(\Phi) = \frac{\sinh(\Phi)}{\Phi}$ 

<sup>1</sup>Sauter, Schwab, Springer, Berlin-2011, 101-181





• 
$$\psi_{e}$$
: Extended potential from  $\Omega^{C}$  to  $\Omega_{0}$   
•  $\mathcal{F}(\Phi) = \frac{\sinh(\Phi)}{\Phi}$   
•  $\sigma_{e}$ : Charge density generating  $\psi_{e}$  satisfying

$$\mathbf{S}_{\kappa}\sigma_{\mathbf{e}}(\mathbf{x}) = \int_{\Gamma_0} \frac{\exp\left(-\kappa |\mathbf{x} - \mathbf{y}|\right)\sigma_{\mathbf{e}}(\mathbf{y})}{4\pi |\mathbf{x} - \mathbf{y}|} = \psi_{\mathbf{e}} \quad \forall \ \mathbf{x} \in \Gamma_0$$

 $\circ~{\rm S}_{\kappa}$  : Invertible single-layer potential operator ^1

 $\mathbf{S}_{\boldsymbol{\kappa}}: \mathbf{H}^{-1/2}(\Gamma_0) \to \mathbf{H}^{1/2}(\Gamma_0)$ 

<sup>1</sup>Sauter, Schwab, Springer, Berlin-2011, 101-181





#### ddPB-Method
























We can decompose Ω<sub>0</sub>

$$\Omega_0 = \bigcup_{j=1}^{\mathsf{M}} \Omega_j, \qquad \Omega_j = \mathsf{B}_{\mathsf{R}_j}(\mathsf{x}_j)$$

 $\circ \ \mathbf{R}_{\mathbf{j}} = \mathbf{r}_{\mathbf{j}} + \mathbf{a} + \mathbf{r}_0 + \mathbf{r}_{\mathbf{p}}$ 

<sup>&</sup>lt;sup>8</sup>Nottoli, Herbst, J., Lipparini, Mikhalev, Stamm: WIREs Computational Molecular Science, 14 (4), e1726, 2024





<sup>&</sup>lt;sup>1</sup>Cances, Maday, Stamm: The Journal of Chemical Physics, 139 (5), 054111, 2013

<sup>&</sup>lt;sup>2</sup> Lipparini, Stamm, Cances, Maday, Mennucci: Journal of Chemical Theory and Computation, 9 (8), 3637-3648, 2013

<sup>&</sup>lt;sup>3</sup>Lipparini, et.al. : The Journal of Physical Chemistry Letters, 5 (4), 953-958, 2014

<sup>&</sup>lt;sup>4</sup>Stamm, Cances, Lipparini, Maday: The Journal of Chemical Physics, 144 (1), 054101, 2016

<sup>&</sup>lt;sup>5</sup>Gatto, Lipparini, Stamm: The Journal of Chemical Physics, 147 (1), 224108, 2017

<sup>&</sup>lt;sup>6</sup>Quan, Stamm, Maday: SIAM Journal on Scientific Computing, 41 (2), B320-B350, 2019

<sup>&</sup>lt;sup>7</sup> J., Nottoli, Mikhalev, Quan, Stamm: The Journal of Chemical Physics, 158 (1), 104105, 2023

We can decompose Ω<sub>0</sub>

$$\Omega_0 = \bigcup_{j=1}^{\mathsf{M}} \Omega_j, \qquad \Omega_j = \mathsf{B}_{\mathsf{R}_j}(\mathsf{x}_j)$$

 $\circ \mathbf{R}_{\mathbf{j}} = \mathbf{r}_{\mathbf{j}} + \mathbf{a} + \mathbf{r}_0 + \mathbf{r}_{\mathbf{p}}$ 

- History of dd-methods
  - $\circ$  ddCOSMO: COnductor-like Screening MOdel<sup>1,2,3</sup> ( $\kappa \to \infty$ )

<sup>&</sup>lt;sup>8</sup>Nottoli, Herbst, J., Lipparini, Mikhalev, Stamm: WIREs Computational Molecular Science, 14 (4), e1726, 2024





<sup>&</sup>lt;sup>1</sup>Cances, Maday, Stamm: The Journal of Chemical Physics, 139 (5), 054111, 2013

<sup>&</sup>lt;sup>2</sup> Lipparini, Stamm, Cances, Maday, Mennucci: Journal of Chemical Theory and Computation, 9 (8), 3637-3648, 2013

<sup>&</sup>lt;sup>3</sup>Lipparini, et.al. : The Journal of Physical Chemistry Letters, 5 (4), 953-958, 2014

<sup>&</sup>lt;sup>4</sup>Stamm, Cances, Lipparini, Maday: The Journal of Chemical Physics, 144 (1), 054101, 2016

<sup>&</sup>lt;sup>5</sup>Gatto, Lipparini, Stamm: The Journal of Chemical Physics, 147 (1), 224108, 2017

<sup>&</sup>lt;sup>6</sup>Quan, Stamm, Maday: SIAM Journal on Scientific Computing, 41 (**2**), B320-B350, 2019

<sup>&</sup>lt;sup>7</sup> J., Nottoli, Mikhalev, Quan, Stamm: The Journal of Chemical Physics, 158 (1), 104105, 2023

We can decompose Ω<sub>0</sub>

$$\Omega_0 = \bigcup_{j=1}^{\mathsf{M}} \Omega_j, \qquad \Omega_j = \mathsf{B}_{\mathsf{R}_j}(\mathsf{x}_j)$$

 $\circ \ \mathbf{R}_{\mathbf{j}} = \mathbf{r}_{\mathbf{j}} + \mathbf{a} + \mathbf{r}_0 + \mathbf{r}_{\mathbf{p}}$ 

- History of dd-methods
  - ddCOSMO: COnductor-like Screening MOdel<sup>1,2,3</sup> ( $\kappa \to \infty$ )
  - ddPCM: Polarizable Continuum Model<sup>4,5</sup> ( $\kappa \rightarrow 0$ )

<sup>&</sup>lt;sup>8</sup>Nottoli, Herbst, J., Lipparini, Mikhalev, Stamm: WIREs Computational Molecular Science, 14 (4), e1726, 2024





<sup>&</sup>lt;sup>1</sup>Cances, Maday, Stamm: The Journal of Chemical Physics, 139 (5), 054111, 2013

<sup>&</sup>lt;sup>2</sup> Lipparini, Stamm, Cances, Maday, Mennucci: Journal of Chemical Theory and Computation, 9 (8), 3637-3648, 2013

<sup>&</sup>lt;sup>3</sup>Lipparini, et.al. : The Journal of Physical Chemistry Letters, 5 (4), 953-958, 2014

<sup>&</sup>lt;sup>4</sup>Stamm, Cances, Lipparini, Maday: The Journal of Chemical Physics, 144 (1), 054101, 2016

<sup>&</sup>lt;sup>5</sup>Gatto, Lipparini, Stamm: The Journal of Chemical Physics, 147 (**1**), 224108, 2017

<sup>&</sup>lt;sup>6</sup>Quan, Stamm, Maday: SIAM Journal on Scientific Computing, 41 (**2**), B320-B350, 2019

<sup>&</sup>lt;sup>7</sup> J., Nottoli, Mikhalev, Quan, Stamm: The Journal of Chemical Physics, 158 (1), 104105, 2023

We can decompose Ω<sub>0</sub>

$$\Omega_0 = \bigcup_{j=1}^{\mathsf{M}} \Omega_j, \qquad \Omega_j = \mathsf{B}_{\mathsf{R}_j}(\mathsf{x}_j)$$

 $\circ \ \mathbf{R}_{\mathbf{j}} = \mathbf{r}_{\mathbf{j}} + \mathbf{a} + \mathbf{r}_0 + \mathbf{r}_{\mathbf{p}}$ 

- History of dd-methods
  - ddCOSMO: COnductor-like Screening MOdel<sup>1,2,3</sup> ( $\kappa \to \infty$ )
  - ddPCM: Polarizable Continuum Model<sup>4,5</sup> ( $\kappa \rightarrow 0$ )
  - ddLPB: Linear Poisson-Boltzmann<sup>6,7</sup> ( $\|\psi\| \ll 1$ )

<sup>&</sup>lt;sup>8</sup>Nottoli, Herbst, J., Lipparini, Mikhalev, Stamm: WIREs Computational Molecular Science, 14 (4), e1726, 2024





<sup>&</sup>lt;sup>1</sup>Cances, Maday, Stamm: The Journal of Chemical Physics, 139 (5), 054111, 2013

<sup>&</sup>lt;sup>2</sup> Lipparini, Stamm, Cances, Maday, Mennucci: Journal of Chemical Theory and Computation, 9 (8), 3637-3648, 2013

<sup>&</sup>lt;sup>3</sup>Lipparini, et.al. : The Journal of Physical Chemistry Letters, 5 (4), 953-958, 2014

<sup>&</sup>lt;sup>4</sup>Stamm, Cances, Lipparini, Maday: The Journal of Chemical Physics, 144 (1), 054101, 2016

<sup>&</sup>lt;sup>5</sup>Gatto, Lipparini, Stamm: The Journal of Chemical Physics, 147 (**1**), 224108, 2017

<sup>&</sup>lt;sup>6</sup> Quan, Stamm, Maday: SIAM Journal on Scientific Computing, 41 (2), B320-B350, 2019

<sup>&</sup>lt;sup>7</sup> J., Nottoli, Mikhalev, Quan, Stamm: The Journal of Chemical Physics, 158 (1), 104105, 2023

We can decompose Ω<sub>0</sub>

$$\Omega_0 = \bigcup_{j=1}^{\mathsf{M}} \Omega_j, \qquad \Omega_j = \mathsf{B}_{\mathsf{R}_j}(\mathsf{x}_j)$$

 $\circ \ \mathbf{R}_{\mathbf{j}} = \mathbf{r}_{\mathbf{j}} + \mathbf{a} + \mathbf{r}_0 + \mathbf{r}_{\mathbf{p}}$ 

- History of dd-methods
  - ddCOSMO: COnductor-like Screening MOdel<sup>1,2,3</sup> ( $\kappa \to \infty$ )
  - ddPCM: Polarizable Continuum Model<sup>4,5</sup> ( $\kappa \rightarrow 0$ )
  - ddLPB: Linear Poisson-Boltzmann<sup>6,7</sup> ( $\|\psi\| \ll 1$ )
  - ddX<sup>8</sup>

<sup>4</sup>Stamm, Cances, Lipparini, Maday: The Journal of Chemical Physics, 144 (1), 054101, 2016

Gatto, Lipparini, Stamm: The Journal of Chemical Physics, 147 (1), 224108, 2017

<sup>6</sup>Quan, Stamm, Maday: SIAM Journal on Scientific Computing, 41 (2), B320-B350, 2019

<sup>7</sup> J., Nottoli, Mikhalev, Quan, Stamm: The Journal of Chemical Physics, 158 (1), 104105, 2023

<sup>8</sup>Nottoli, Herbst, J., Lipparini, Mikhalev, Stamm: WIREs Computational Molecular Science, 14 (4), e1726, 2024





<sup>&</sup>lt;sup>1</sup>Cances, Maday, Stamm: The Journal of Chemical Physics, 139 (5), 054111, 2013

<sup>&</sup>lt;sup>2</sup> Lipparini, Stamm, Cances, Maday, Mennucci: Journal of Chemical Theory and Computation, 9 (8), 3637-3648, 2013

<sup>&</sup>lt;sup>3</sup>Lipparini, et.al. : The Journal of Physical Chemistry Letters, 5 (4), 953-958, 2014

• GSP equation in unit ball

$$\begin{split} -\nabla \cdot \left[ \tilde{\varepsilon}(\mathbf{x}) \nabla u(\mathbf{x}) \right] + \tilde{\lambda}(\mathbf{x}) \tilde{\mathcal{F}} \left( \overline{u}(\mathbf{x}) \right) u(\mathbf{x}) &= f(\mathbf{x}) \quad \text{in } B_1(\mathbf{0}), \\ u(\mathbf{x}) &= \phi_r(\mathbf{x}) \quad \text{on } \partial B_1(\mathbf{0}) \end{split}$$





• GSP equation in unit ball

$$\begin{split} -\nabla \cdot \left[ \tilde{\varepsilon}(\mathbf{x}) \nabla u(\mathbf{x}) \right] + \tilde{\lambda}(\mathbf{x}) \tilde{\mathcal{F}} \left( \overline{u}(\mathbf{x}) \right) u(\mathbf{x}) &= f(\mathbf{x}) \quad \text{in } B_1(\mathbf{0}), \\ u(\mathbf{x}) &= \phi_r(\mathbf{x}) \quad \text{on } \partial B_1(\mathbf{0}) \end{split}$$

• Transformation to Homogeneous Problem

$$\begin{split} -\nabla \cdot \left[ \hat{\varepsilon}(\mathbf{x}) \nabla \mathbf{w}(\mathbf{x}) \right] + \tilde{\lambda}(\mathbf{x}) \tilde{\mathcal{F}}\left( \left( \overline{\mathbf{w} + \hat{u}_1} \right)(\mathbf{x}) \right) \mathbf{w}(\mathbf{x}) &= \tilde{\mathbf{f}}(\mathbf{x}) \quad \text{ in } B_1(\mathbf{0}), \\ \mathbf{w}(\mathbf{x}) &= 0 \quad \text{ on } \partial B_1(\mathbf{0}) \end{split}$$





• GSP equation in unit ball

$$\begin{split} -\nabla \cdot \left[ \tilde{\varepsilon}(\mathbf{x}) \nabla u(\mathbf{x}) \right] + \tilde{\lambda}(\mathbf{x}) \tilde{\mathcal{F}} \left( \overline{u}(\mathbf{x}) \right) u(\mathbf{x}) &= f(\mathbf{x}) \quad \text{in } B_1(\mathbf{0}), \\ u(\mathbf{x}) &= \phi_r(\mathbf{x}) \quad \text{on } \partial B_1(\mathbf{0}) \end{split}$$

• Transformation to Homogeneous Problem

$$\begin{split} -\nabla \cdot \left[ \tilde{\varepsilon}(\mathbf{x}) \nabla \mathbf{w}(\mathbf{x}) \right] + \tilde{\lambda}(\mathbf{x}) \tilde{\mathcal{F}}\left( \left( \overline{\mathbf{w}} + \hat{u}_1 \right)(\mathbf{x}) \right) \mathbf{w}(\mathbf{x}) &= \tilde{\mathbf{f}}(\mathbf{x}) \quad \text{ in } B_1(\mathbf{0}), \\ \mathbf{w}(\mathbf{x}) &= 0 \quad \text{ on } \partial B_1(\mathbf{0}) \end{split}$$

$$\circ \mathbf{w}(\mathbf{x}) = \mathbf{u}(\mathbf{x}) - \hat{u}_1(\mathbf{x})$$
  
 
$$\circ \tilde{f}(\mathbf{x}) = f(\mathbf{x}) + \nabla \cdot [\tilde{\varepsilon}(\mathbf{x})\nabla \hat{u}_1(\mathbf{x})] - \tilde{\lambda}(\mathbf{x})\tilde{\mathcal{F}}\left(\left(\overline{\mathbf{w} + \hat{u}_1}\right)(\mathbf{x})\right) \hat{u}_1(\mathbf{x})$$





• GSP equation in unit ball

$$\begin{split} -\nabla \cdot \left[ \tilde{\varepsilon}(\mathbf{x}) \nabla u(\mathbf{x}) \right] + \tilde{\lambda}(\mathbf{x}) \tilde{\mathcal{F}} \left( \overline{u}(\mathbf{x}) \right) u(\mathbf{x}) &= f(\mathbf{x}) \quad \text{in } B_1(\mathbf{0}), \\ u(\mathbf{x}) &= \phi_r(\mathbf{x}) \quad \text{on } \partial B_1(\mathbf{0}) \end{split}$$

• Transformation to Homogeneous Problem

$$\begin{split} -\nabla \cdot \left[ \tilde{\varepsilon}(\mathbf{x}) \nabla \mathbf{w}(\mathbf{x}) \right] + \tilde{\lambda}(\mathbf{x}) \tilde{\mathcal{F}}\left( \left( \overline{\mathbf{w} + \hat{u}_1} \right)(\mathbf{x}) \right) \mathbf{w}(\mathbf{x}) &= \tilde{\mathbf{f}}(\mathbf{x}) \quad \text{ in } B_1(\mathbf{0}), \\ \mathbf{w}(\mathbf{x}) &= 0 \quad \text{ on } \partial B_1(\mathbf{0}) \end{split}$$

 $\circ \mathbf{w}(\mathbf{x}) = \mathbf{u}(\mathbf{x}) - \hat{u}_1(\mathbf{x}) \\ \circ \tilde{f}(\mathbf{x}) = f(\mathbf{x}) + \nabla \cdot [\tilde{\varepsilon}(\mathbf{x})\nabla \hat{u}_1(\mathbf{x})] - \tilde{\lambda}(\mathbf{x})\tilde{\mathcal{F}}\left(\left(\overline{\mathbf{w} + \hat{u}_1}\right)(\mathbf{x})\right) \hat{u}_1(\mathbf{x}) \\ \circ \hat{u}_1(\mathbf{x}) : \text{Laplace solution satisfying the boundary condition}$ 





• GSP equation in unit ball

$$\begin{split} -\nabla \cdot \left[ \tilde{\varepsilon}(\mathbf{x}) \nabla u(\mathbf{x}) \right] + \tilde{\lambda}(\mathbf{x}) \tilde{\mathcal{F}} \left( \overline{u}(\mathbf{x}) \right) u(\mathbf{x}) &= f(\mathbf{x}) \quad \text{in } B_1(\mathbf{0}), \\ u(\mathbf{x}) &= \phi_r(\mathbf{x}) \quad \text{on } \partial B_1(\mathbf{0}) \end{split}$$

• Transformation to Homogeneous Problem

$$\begin{split} -\nabla \cdot \left[ \tilde{\varepsilon}(\mathbf{x}) \nabla \mathbf{w}(\mathbf{x}) \right] + \tilde{\lambda}(\mathbf{x}) \tilde{\mathcal{F}}\left( \left( \overline{\mathbf{w}} + \hat{u}_1 \right)(\mathbf{x}) \right) \mathbf{w}(\mathbf{x}) &= \tilde{\mathbf{f}}(\mathbf{x}) \quad \text{ in } B_1(\mathbf{0}), \\ \mathbf{w}(\mathbf{x}) &= 0 \quad \text{ on } \partial B_1(\mathbf{0}) \end{split}$$

 $\begin{array}{l} \circ \ \mathbf{w}(\mathbf{x}) = \mathbf{u}(\mathbf{x}) - \hat{u}_{1}(\mathbf{x}) \\ \circ \ \tilde{f}(\mathbf{x}) = f(\mathbf{x}) + \nabla \cdot [\tilde{\varepsilon}(\mathbf{x})\nabla \hat{u}_{1}(\mathbf{x})] - \tilde{\lambda}(\mathbf{x})\tilde{\mathcal{F}}\left(\left(\overline{\mathbf{w} + \hat{u}_{1}}\right)(\mathbf{x})\right) \hat{u}_{1}(\mathbf{x}) \\ \circ \ \hat{u}_{1}(\mathbf{x}) : \text{Laplace solution satisfying the boundary condition} \\ \bullet \ B_{r_{i}}(\mathbf{x}_{j}) \subset \Omega_{j} \end{array}$ 





• GSP equation in unit ball

$$\begin{split} -\nabla \cdot \left[ \tilde{\varepsilon}(\mathbf{x}) \nabla u(\mathbf{x}) \right] + \tilde{\lambda}(\mathbf{x}) \tilde{\mathcal{F}} \left( \overline{u}(\mathbf{x}) \right) u(\mathbf{x}) &= f(\mathbf{x}) \quad \text{in } B_1(\mathbf{0}), \\ u(\mathbf{x}) &= \phi_r(\mathbf{x}) \quad \text{on } \partial B_1(\mathbf{0}) \end{split}$$

• Transformation to Homogeneous Problem

$$\begin{split} -\nabla \cdot \left[ \tilde{\varepsilon}(\mathbf{x}) \nabla \mathbf{w}(\mathbf{x}) \right] + \tilde{\lambda}(\mathbf{x}) \tilde{\mathcal{F}}\left( \left( \overline{\mathbf{w}} + \hat{u}_1 \right)(\mathbf{x}) \right) \mathbf{w}(\mathbf{x}) &= \tilde{\mathbf{f}}(\mathbf{x}) \quad \text{ in } B_1(\mathbf{0}), \\ \mathbf{w}(\mathbf{x}) &= 0 \quad \text{ on } \partial B_1(\mathbf{0}) \end{split}$$

- $\circ \mathbf{w}(\mathbf{x}) = \mathbf{u}(\mathbf{x}) \hat{u}_{1}(\mathbf{x})$  $\circ \tilde{\mathbf{f}}(\mathbf{x}) = \mathbf{f}(\mathbf{x}) + \nabla \cdot [\tilde{\varepsilon}(\mathbf{x})\nabla\hat{u}_{1}(\mathbf{x})] - \tilde{\lambda}(\mathbf{x})\tilde{\mathcal{F}}\left(\left(\overline{\mathbf{w} + \hat{u}_{1}}\right)(\mathbf{x})\right)\hat{u}_{1}(\mathbf{x})$
- $\circ~\hat{u}_1(\textbf{x})$  : Laplace solution satisfying the boundary condition
- $B_{r_j}(\mathbf{x}_j) \subset \Omega_j$ 
  - $\psi_{\mathbf{r}}(\mathbf{x})$  is harmonic in  $B_{\mathbf{r}_j}(\mathbf{x}_j)$





• GSP equation in unit ball

$$\begin{split} -\nabla \cdot \left[ \tilde{\varepsilon}(\mathbf{x}) \nabla u(\mathbf{x}) \right] + \tilde{\lambda}(\mathbf{x}) \tilde{\mathcal{F}} \left( \overline{u}(\mathbf{x}) \right) u(\mathbf{x}) &= f(\mathbf{x}) \quad \text{in } B_1(\mathbf{0}), \\ u(\mathbf{x}) &= \phi_r(\mathbf{x}) \quad \text{on } \partial B_1(\mathbf{0}) \end{split}$$

• Transformation to Homogeneous Problem

$$\begin{aligned} -\nabla \cdot \left[ \tilde{\varepsilon}(\mathbf{x}) \nabla \mathbf{w}(\mathbf{x}) \right] + \tilde{\lambda}(\mathbf{x}) \tilde{\mathcal{F}}\left( \left( \overline{\mathbf{w} + \hat{u}_1} \right)(\mathbf{x}) \right) \mathbf{w}(\mathbf{x}) &= \tilde{\mathbf{f}}(\mathbf{x}) \quad \text{ in } B_1(\mathbf{0}), \\ \mathbf{w}(\mathbf{x}) &= 0 \quad \text{ on } \partial B_1(\mathbf{0}) \end{aligned}$$

- $\circ \mathbf{w}(\mathbf{x}) = \mathbf{u}(\mathbf{x}) \hat{u}_{1}(\mathbf{x})$  $\circ \tilde{\mathbf{f}}(\mathbf{x}) = \mathbf{f}(\mathbf{x}) + \nabla \cdot \left[\tilde{\varepsilon}(\mathbf{x})\nabla\hat{u}_{1}(\mathbf{x})\right] - \tilde{\lambda}(\mathbf{x})\tilde{\mathcal{F}}\left(\left(\overline{\mathbf{w} + \hat{u}_{1}}\right)(\mathbf{x})\right)\hat{u}_{1}(\mathbf{x})$
- $\hat{u}_1(\mathbf{x})$  : Laplace solution satisfying the boundary condition
- $B_{\mathbf{r}_j}(\mathbf{x}_j) \subset \Omega_j$ 
  - $\psi_{\mathbf{r}}(\mathbf{x})$  is harmonic in  $B_{\mathbf{r}_i}(\mathbf{x}_j)$
  - $\mathbf{w}(\mathbf{x})$  is harmonic in  $B_{\delta}(\mathbf{0})$  where

$$\delta = \frac{\mathbf{r}_j}{\mathbf{r}_j + \mathbf{r}_0 + \mathbf{r}_p + \mathbf{a}} \in (0, 1)$$





• Find  $\mathbf{w} \in H^1_{0,\delta}(\mathcal{D})$  such that

$$\begin{split} \int_{\mathcal{D}} \tilde{\varepsilon}(\mathbf{x}) \nabla w(\mathbf{x}) \nabla \tilde{w}(\mathbf{x}) &+ \int_{\mathcal{D}} \tilde{\lambda}(\mathbf{x}) \tilde{\mathcal{F}}\left(\overline{w}(\mathbf{x})\right) w(\mathbf{x}) \tilde{w}(\mathbf{x}) \\ &+ \int_{\partial \mathcal{B}_{\delta}(\mathbf{0})} \left(\mathcal{T} w\right) \tilde{w}(\mathbf{x}) = \int_{\mathcal{D}} \tilde{f}(\mathbf{x}) \tilde{w}(\mathbf{x}) \quad \forall \ \tilde{w} \in H^{1}_{0,\delta}(\mathcal{D}), \end{split}$$





• Find  $\mathbf{w} \in H^1_{0,\delta}(\mathcal{D})$  such that

$$\begin{split} \int_{\mathcal{D}} \tilde{\varepsilon}(\mathbf{x}) \nabla \mathbf{w}(\mathbf{x}) \nabla \tilde{w}(\mathbf{x}) &+ \int_{\mathcal{D}} \tilde{\lambda}(\mathbf{x}) \tilde{\mathcal{F}}(\overline{\mathbf{w}}(\mathbf{x})) \, \mathbf{w}(\mathbf{x}) \tilde{w}(\mathbf{x}) \\ &+ \int_{\partial \mathsf{B}_{\delta}(\mathbf{0})} \left( \mathcal{T} \mathbf{w} \right) \tilde{w}(\mathbf{x}) = \int_{\mathcal{D}} \tilde{\mathsf{f}}(\mathbf{x}) \tilde{w}(\mathbf{x}) \quad \forall \ \tilde{w} \in \mathsf{H}^{1}_{0,\delta}(\mathcal{D}), \end{split}$$

$$\circ \ \mathcal{D} = \mathsf{B}_1(\mathbf{0}) \setminus \mathsf{B}_{\delta}(\mathbf{0}) \\ \circ \ \mathsf{H}_{0,\delta}^1(\mathcal{D}) = \left\{ \mathsf{w} \in \mathsf{H}^1(\mathcal{D}) : \mathsf{w}|_{\partial \mathsf{B}_1(\mathbf{0})} = 0 \right\}$$





• Find  $\mathbf{w} \in H^1_{0,\delta}(\mathcal{D})$  such that

$$\begin{split} \int_{\mathcal{D}} \tilde{\varepsilon}(\mathbf{x}) \nabla \mathbf{w}(\mathbf{x}) \nabla \tilde{w}(\mathbf{x}) &+ \int_{\mathcal{D}} \tilde{\lambda}(\mathbf{x}) \tilde{\mathcal{F}}\left(\overline{\mathbf{w}}(\mathbf{x})\right) \mathbf{w}(\mathbf{x}) \tilde{w}(\mathbf{x}) \\ &+ \int_{\partial \mathcal{B}_{\delta}(\mathbf{0})} \left(\mathcal{T}\mathbf{w}\right) \tilde{w}(\mathbf{x}) = \int_{\mathcal{D}} \tilde{\mathbf{f}}(\mathbf{x}) \tilde{w}(\mathbf{x}) \quad \forall \ \tilde{w} \in H^{1}_{0,\delta}(\mathcal{D}), \end{split}$$

$$\circ \ \ \mathcal{D} = \mathcal{B}_1(\mathbf{0}) \setminus \mathcal{B}_{\delta}(\mathbf{0}) \\ \circ \ \ \mathcal{H}_{0,\delta}^1(\mathcal{D}) = \left\{ \mathbf{w} \in \mathcal{H}^1(\mathcal{D}) : \mathbf{w}|_{\partial \mathcal{B}_1(\mathbf{0})} = 0 \right\}$$

• Using Galerkin discretisation

$$\mathsf{w}_{\mathcal{B}}(\mathbf{r},\theta,\varphi) = \sum_{i=0}^{\mathsf{N}} \sum_{\ell=0}^{\ell} \sum_{m=-\ell}^{\ell} [\phi_{\mathbf{r}}]_{i\ell}^{\mathsf{m}} \varrho_{\mathbf{i}}(\mathbf{r}) \mathbf{Y}_{\ell}^{\mathsf{m}}(\theta,\varphi) \quad \forall \ \delta \leq \mathsf{r} \leq 1; \quad 0 \leq \theta \leq \pi; \quad 0 \leq \varphi \leq 2\pi,$$

- $\varrho_i$ : Legendre polynomial of order *i*
- N : Maximum degree of Legendre polynomial of order  $\varrho_i$
- $Y_{\ell}^m$  : Spherical Harmonic Basis
- $\ell_{max}$  : Maximum degree of  $Y_{\ell}^m$





• System of Equation

$$\mathbf{A}\mathbf{X}_{\mathbf{r}} = \mathbf{F}$$

#### where

•  $k(:= N(\ell^2 + m + 1) + i \in \{1, 2, \dots, N(\ell_{\max} + 1)^2\}), k' \text{ entry}$ 

$$\begin{aligned} [\mathbf{A}]_{\mathbf{k},\mathbf{k}'} &= \int_{\mathcal{D}} \tilde{\varepsilon}(\mathbf{x}) \nabla \left( \varrho_{i} \mathbf{Y}_{\ell}^{m} \right) \cdot \nabla \left( \varrho_{j} \mathbf{Y}_{\ell'}^{m'} \right) \\ &+ \int_{\mathcal{D}} \tilde{\lambda}(\mathbf{x}) \tilde{\mathcal{F}} \left( \overline{\tilde{\mathbf{w}}}(\mathbf{x}) \right) \varrho_{i} \mathbf{Y}_{\ell}^{m} \varrho_{j} \mathbf{Y}_{\ell'}^{m} \\ &+ \frac{\ell}{\delta} \int_{\partial \mathbf{B}_{\delta}(\mathbf{0})} \varrho_{i} \mathbf{Y}_{\ell}^{m} \varrho_{j} \mathbf{Y}_{\ell'}^{m'}, \end{aligned}$$

0

$$[\mathbf{F}]_{\mathbf{k}} = \int_{\mathcal{D}} \tilde{f}_{\boldsymbol{\ell} \mathbf{j}} \mathbf{Y}_{\boldsymbol{\ell}'}^{\mathbf{m}'} \quad \forall \ \mathbf{k} \in \{1, \dots, \mathsf{N}(\ell_{\mathsf{max}} + 1)^2\}.$$





• HSP equation in unit ball <sup>1</sup>

$$\begin{aligned} -\Delta u_{\mathsf{e}} + \kappa^2 u_{\mathsf{e}}^2 &= 0 \quad \text{ in } B_1(\mathbf{0}), \\ u_{\mathsf{e}} &= \phi_{\mathsf{e}} \quad \text{ on } \mathbb{S}^2 \end{aligned}$$

•  $u_{\rm e}$  can be numerically approximated by  $\tilde{u}_{\rm e}$ 

$$\tilde{\mathsf{u}}_{\mathsf{e}}(\mathbf{r},\theta,\varphi) = \sum_{\ell=0}^{\ell_{\mathsf{max}}} \sum_{m=-\ell}^{\ell} \left[ \tilde{\phi}_{\mathsf{e}} \right]_{\ell}^{m} \frac{i_{\ell}(\mathbf{r})}{i_{\ell}(1)} \mathbf{Y}_{\ell}^{m}(\theta,\varphi)$$

for 0 < r < 1,  $0 < \theta < \pi$ ,  $0 < \varphi < 2\pi$ 



<sup>2</sup> Lebedev: USSR Computational Mathematics and Mathematical Physics, 16 (2), 293-306, 1976





• HSP equation in unit ball <sup>1</sup>

$$\begin{aligned} -\Delta u_{\mathsf{e}} + \kappa^2 u_{\mathsf{e}}^2 &= 0 \quad \text{ in } B_1(\mathbf{0}), \\ u_{\mathsf{e}} &= \phi_{\mathsf{e}} \quad \text{ on } \mathbb{S}^2 \end{aligned}$$

•  $u_e$  can be numerically approximated by  $\tilde{u}_e$ 

$$\tilde{\mathbf{u}}_{\mathbf{e}}(\mathbf{r},\boldsymbol{\theta},\varphi) = \sum_{\ell=0}^{\ell_{\max}} \sum_{m=-\ell}^{\ell} \left[ \tilde{\phi}_{\mathbf{e}} \right]_{\ell}^{m} \frac{\mathbf{i}_{\ell}(\mathbf{r})}{\mathbf{i}_{\ell}(1)} \mathbf{Y}_{\ell}^{m}(\boldsymbol{\theta},\varphi)$$

for 
$$0 \le r \le 1, \ 0 \le \theta \le \pi, \ 0 \le \varphi < 2\pi$$
  
 $\circ \left[\tilde{\phi}_{\mathsf{e}}\right]_{\ell}^{\mathsf{m}}$ : Numerical approximation of  $\left[\phi_{\mathsf{e}}\right]_{\ell}^{\mathsf{m}_{2}}$ 

$$\left[\tilde{\phi}_{\mathsf{e}}\right]_{\ell}^{m} = \sum_{\mathsf{n}=1}^{\mathsf{N}_{\mathsf{leb}}} \omega_{\mathsf{n}}^{\mathsf{leb}} \phi_{\mathsf{e}}(\mathsf{s}_{\mathsf{n}}) \mathbf{Y}_{\ell}^{m}(\mathsf{s}_{\mathsf{n}})$$

<sup>1</sup>Quan, Stamm, Maday: SIAM Journal on Scientific Computing, 41 (2), B320-B350, 2019
 <sup>2</sup>Lebedev: USSR Computational Mathematics and Mathematical Physics, 16 (2), 293-306, 1976





• Numerical Integration<sup>1,2</sup>

<sup>1</sup>Haxton: J.Phy.B, 40 (**1**), 4443, 2007

<sup>2</sup>Parter: Journal of Scientific Computing, 14 (1), 347-355, 1999





• Numerical Integration<sup>1,2</sup>

$$\begin{split} \int_{\mathcal{D}} \mathbf{h}(\mathbf{x}) d\mathbf{x} &= \int_{\delta}^{1} r^{2} \int_{\mathbb{S}^{2}} \mathbf{h}(r, \mathbf{s}) d\mathbf{s} dr \\ &\approx \frac{1-\delta}{2} \sum_{m=1}^{N_{\text{lgl}}} \sum_{n=1}^{N_{\text{leb}}} \omega_{m}^{\text{lgl}} \omega_{n}^{\text{leb}} \left( \frac{1-\delta}{2} (\mathbf{x}_{m}+1) + \delta \right)^{2} \\ &\times h \left( \frac{1-\delta}{2} (\mathbf{x}_{m}+1) + \delta, \mathbf{s}_{n} \right). \end{split}$$

<sup>1</sup>Haxton: J.Phy.B, 40 (1), 4443, 2007

<sup>2</sup>Parter: Journal of Scientific Computing, 14 (1), 347-355, 1999





• Energy Computation<sup>1</sup>

$$\mathsf{E}_{\mathsf{s}} = \frac{\beta}{2} \int_{\Omega} \rho^{\mathsf{sol}}(\mathbf{x}) \psi_{\mathsf{r}}(\mathbf{x}) + \frac{\beta^2 \kappa^2 \varepsilon_{\mathsf{s}}}{8\pi} \int_{\Omega} \lambda(\mathbf{x}) \left(\psi_{\mathsf{r}}(\mathbf{x}) \sinh\left(\psi_{\mathsf{r}}(\mathbf{x})\right) - 2\cosh\left(\psi_{\mathsf{r}}(\mathbf{x})\right)\right)$$

<sup>&</sup>lt;sup>1</sup>Stein, Herbert, Head-Gordon: The Journal of Chemical Physics, 151 (22), 224111, 2019





• Energy Computation<sup>1</sup>

$$\mathsf{E}_{\mathsf{s}} = \frac{\beta}{2} \int_{\Omega} \rho^{\mathsf{sol}}(\mathbf{x}) \psi_{\mathsf{r}}(\mathbf{x}) + \frac{\beta^2 \kappa^2 \varepsilon_{\mathsf{s}}}{8\pi} \int_{\Omega} \lambda(\mathbf{x}) \left(\psi_{\mathsf{r}}(\mathbf{x}) \sinh\left(\psi_{\mathsf{r}}(\mathbf{x})\right) - 2\cosh\left(\psi_{\mathsf{r}}(\mathbf{x})\right)\right)$$

- Stopping Criteria
  - Global Iterative Process

$$|E_s^k - E_s^{k-1}| / |E_s^k| \le \mathsf{tol}$$

<sup>1</sup>Stein, Herbert, Head-Gordon: The Journal of Chemical Physics, 151 (22), 224111, 2019





• Energy Computation<sup>1</sup>

$$\mathsf{E}_{\mathsf{s}} = \frac{\beta}{2} \int_{\Omega} \rho^{\mathsf{sol}}(\mathbf{x}) \psi_{\mathsf{r}}(\mathbf{x}) + \frac{\beta^2 \kappa^2 \varepsilon_{\mathsf{s}}}{8\pi} \int_{\Omega} \lambda(\mathbf{x}) \left(\psi_{\mathsf{r}}(\mathbf{x}) \sinh\left(\psi_{\mathsf{r}}(\mathbf{x})\right) - 2\cosh\left(\psi_{\mathsf{r}}(\mathbf{x})\right)\right)$$

- Stopping Criteria
  - Global Iterative Process

$$|E_s^k - E_s^{k-1}| / |E_s^k| \le \text{tol}$$

 $\circ \ \ \mathsf{DD} \ \mathsf{loop}$ 

$$\frac{\|\mathbf{X}_{\mathsf{r}}^{\mathsf{k}} - \mathbf{X}_{\mathsf{r}}^{\mathsf{k}-1}\|_{\ell^2}}{\|\mathbf{X}_{\mathsf{r}}^{\mathsf{k}}\|_{\ell^2}} \le 10 \times \mathsf{tol}$$

<sup>1</sup>Stein, Herbert, Head-Gordon: The Journal of Chemical Physics, 151 (22), 224111, 2019





• Energy Computation<sup>1</sup>

$$\mathsf{E}_{\mathsf{s}} = \frac{\beta}{2} \int_{\Omega} \rho^{\mathsf{sol}}(\mathbf{x}) \psi_{\mathsf{r}}(\mathbf{x}) + \frac{\beta^2 \kappa^2 \varepsilon_{\mathsf{s}}}{8\pi} \int_{\Omega} \lambda(\mathbf{x}) \left(\psi_{\mathsf{r}}(\mathbf{x}) \sinh\left(\psi_{\mathsf{r}}(\mathbf{x})\right) - 2\cosh\left(\psi_{\mathsf{r}}(\mathbf{x})\right)\right)$$

- Stopping Criteria
  - Global Iterative Process

$$|E_s^k - E_s^{k-1}| / |E_s^k| \le tol$$

 $\circ \ \ \mathsf{DD} \ \mathsf{loop}$ 

$$\frac{\|\boldsymbol{\mathsf{X}}_{\mathsf{r}}^{\mathsf{k}} - \boldsymbol{\mathsf{X}}_{\mathsf{r}}^{\mathsf{k}-1}\|_{\ell^2}}{\|\boldsymbol{\mathsf{X}}_{\mathsf{r}}^{\mathsf{k}}\|_{\ell^2}} \le 10 \times \mathsf{tol}$$

• Matrix loop

$$\frac{\|\mathbf{X}_{\mathsf{r},\mathsf{i}}^{\mathsf{k}} - \mathbf{X}_{\mathsf{r},\mathsf{i}}^{\mathsf{k}-1}\|_{\ell^2}}{\|\mathbf{X}_{\mathsf{r},\mathsf{i}}^{\mathsf{k}}\|_{\ell^2}} \le 100 \times \mathsf{tol}$$

<sup>1</sup>Stein, Herbert, Head-Gordon: The Journal of Chemical Physics, 151 (22), 224111, 2019





• Constants in the model





- Constants in the model
  - ε<sub>s</sub>: 78.54
  - κ: 0.104 Å<sup>-1</sup>
  - ∘ *r<sub>p</sub>*: 1.4 Å
  - T: 298.15 K
  - $\circ\,$  tol:  $10^{-7}$





- Constants in the model
  - ο ε<sub>s</sub>: 78.54
  - κ: 0.104 Å<sup>-1</sup>
  - ∘ *r<sub>p</sub>*: 1.4 Å
  - T: 298.15 K
  - tol:  $10^{-7}$
  - Conversion to atomic units





## Potential for One Sphere

- One Sphere
- Discretisation Parameters: N = 20,  $N_{lgl} = 200$
- Geometric Parameters:  $r_1 = 2 \text{ Å}$ ,  $r_0 = 1 \text{ Å}$ , a = 0 Å







## **Effect of Discretisation Parameters**

- Discretisation Parameters: N = 30,  $N_{lgl} = 300$
- Geometric Parameters:  $r_1 = 2$  Å,  $r_0 = 5$  Å, a = 0 Å



• Similar observations for spherical discretisation





### Variation of $\psi_r$

- Hydrogen Fluoride Molecule
- Discretisation Parameters: N = 40,  $N_{lgl} = 500$ ,  $\ell_{max} = 7$ ,  $N_{leb} = 86$
- Geometric Parameters: a = 1 Å,  $r_0^{\text{max}} = 91 \text{ Å}$



• **Error**<sub> $r_0$ </sub> :=  $|E_s(r_0) - E_s(r_0^{\max})|$ 





# Convergence of Global Strategy

- Caffeine Molecule
- Discretisation Parameters: N = 15,  $N_{lgl} = 50$ ,  $\ell_{max} = 9$ ,  $N_{leb} = 350$
- Geometric Parameters:  $r_0 = 5 \text{ Å}$ , a = 1 Å



•  $E_s^{\infty}$ : 15 Outer Iterations





## Effect of Stern layer

- Hydrogen Fluoride Molecule
- Discretisation Parameters: N = 15,  $N_{lgl} = 50$ ,  $\ell_{max} = 9$ ,  $N_{leb} = 350$
- Geometric Parameters:  $r_0 = 2 \text{ Å}$







## **Rotational Symmetry**

- Hydrogen Fluoride Molecule
- Discretisation Parameters: N = 15,  $N_{lgl} = 50$
- Geometric Parameters:  $r_0 = 3 \text{ Å}$ , a = 5 Å






## Visualisation of Potential

- Visualisation of  $\psi_{\rm r}$
- Discretisation Parameters: N = 15,  $N_{lgl} = 50$ ,  $\ell_{max} = 11$ ,  $N_{leb} = 1202$
- Geometric Parameters:  $r_0 = 3 \text{ Å}, a = 1 \text{ Å}$







#### Effect of $\kappa$

- Hydrogen Fluoride Molecule
- Variation of  $\kappa$
- Discretisation Parameters: N = 15,  $N_{lgl} = 30$ ,  $\ell_{max} = 7$ ,  $N_{leb} = 86$
- Geometric Parameters:  $r_0 = 0 \text{ Å}$ , a = 0 Å







#### Conclusions<sup>1</sup>

## • Formulation of domain decomposition method for PB equations

<sup>1</sup>J., Stamm: arXiv:2309.06862, 2023





### Conclusions<sup>1</sup>

- Formulation of domain decomposition method for PB equations
- Development of a non-linear solver

<sup>1</sup>J., Stamm: arXiv:2309.06862, 2023





### Conclusions<sup>1</sup>

- Formulation of domain decomposition method for PB equations
- Development of a non-linear solver
- Inclusion of Steric effects

<sup>1</sup>J., Stamm: arXiv:2309.06862, 2023





#### Conclusions<sup>1</sup>

- Formulation of domain decomposition method for PB equations
- Development of a non-linear solver
- Inclusion of Steric effects
- Current implementation for small molecules

<sup>1</sup>J., Stamm: arXiv:2309.06862, 2023





### Conclusions<sup>1</sup>

- Formulation of domain decomposition method for PB equations
- Development of a non-linear solver
- Inclusion of Steric effects
- Current implementation for small molecules
- Outlook
  - Implementation to ddX library<sup>2</sup>





<sup>&</sup>lt;sup>1</sup>J., Stamm: arXiv:2309.06862, 2023

### Conclusions<sup>1</sup>

- Formulation of domain decomposition method for PB equations
- Development of a non-linear solver
- Inclusion of Steric effects
- Current implementation for small molecules

### Outlook

- Implementation to ddX library<sup>2</sup>
- Acceleration techniques





<sup>&</sup>lt;sup>1</sup>J., Stamm: arXiv:2309.06862, 2023

# **Thank You!**

Webpage: tinyurl.com/abhi0207



Abhinav Jha ddNPB-SES, 4<sup>th</sup> November 2024

