Domain Decomposition Methods for the Poisson-Boltzmann Equations

Abhinav Jha

Numerical Mathematics for High Performance Computing, Universität Stuttgart

Institute Seminar 24th October 2023

Joint work with B. Stamm (Universität Stuttgart, Stuttgart)

Outline

- 1 Model Problem
- 2 ddPB Method
- 3 ddPB Derivation
- 4 Numerical Studies
- 5 Conclusions and Outlook

Model Problem ddPB Method ddPB Derivation Numerical Studies Conclusions and Outlook

- Ionic Solvation Models¹
 - Explicit Solvation Models
 - Adopts molecular representation of both solute and solvent
 - Accurate results
 - Computationally expensive

¹Zhang et. al.: JCTC, 13, 1034-1043, 2017

²Cances, Mennucci, Tomasi: JCP 107 (8), 3032-3041, 1997

³Honig, Nicholls: Sci. 268, 1144-1149, 1995

Model Problem ddPB Method ddPB Derivation Numerical Studies Conclusions and Outlook

- Ionic Solvation Models¹
 - Explicit Solvation Models
 - Adopts molecular representation of both solute and solvent
 - Accurate results
 - Computationally expensive
 - Implicit Solvation Models ^{2,3}
 - Microscopic treatment of solute
 - Macroscopic treatment of solvent using physical properties
 - Less computational cost

¹Zhang et. al.: JCTC, 13, 1034-1043, 2017

²Cances, Mennucci, Tomasi: JCP 107 (8), 3032-3041, 1997

³Honig, Nicholls: Sci. 268, 1144-1149, 1995

Model Problem ddPB Method ddPB Derivation Numerical Studies Conclusions and Outle

Figure 1: Formaldehyde Molecule

Model Problem ddPB Method ddPB Derivation Numerical Studies Conclusions and Outlook

• Poisson-Boltzman (PB) Equation ^{1,2}

$$-\nabla \cdot \left[\varepsilon_{\mathsf{abs}}\varepsilon(\mathbf{x})\nabla \tilde{\psi}(\mathbf{x})\right] = \rho^{\mathsf{sol}}(\mathbf{x}) + \rho^{\mathsf{ions}}(\mathbf{x}) \quad \text{in } \mathbb{R}^3$$

 $\circ \ ilde{\psi}(\mathbf{x})$: Electrostatic potential

¹Gouy: JPTA 9, 457-468, 1910 ²Chapman: Journal of Science, 25, 475-481, 1913

Model Problem ddPB Method ddPB Derivation Numerical Studies Conclusions and Outlook

• Poisson-Boltzman (PB) Equation ^{1,2}

$$-\nabla \cdot \left[\varepsilon_{\mathsf{abs}}\varepsilon(\mathbf{x})\nabla \tilde{\psi}(\mathbf{x})\right] = \rho^{\mathsf{sol}}(\mathbf{x}) + \rho^{\mathsf{ions}}(\mathbf{x}) \quad \text{in } \mathbb{R}^3$$

 $\begin{array}{l} \circ ~~ \tilde{\psi}(\mathbf{x}): \text{Electrostatic potential} \\ \circ ~~ \varepsilon(\mathbf{x}): \text{Space-dependent dielectric permittivity} \\ \circ ~~ \rho^{\text{sol}}(\mathbf{x}): \text{Solute charge distribution} \end{array}$

$$\rho^{\rm sol}(\mathbf{x}) = \sum_{i=1}^{\sf M} q_i \delta(\mathbf{x} - \mathbf{x}_i)$$

- M : Number of solute atoms - q_i : Total charge on the i^{th} atom

¹Gouy: JPTA 9, 457-468, 1910

²Chapman: Journal of Science, 25, 475-481, 1913

Model Problem ddPB Method ddPB Derivation Numerical Studies Conclusions and Outlook

$\circ \ \rho^{ions}(\mathbf{x})$: lonic charge distribution

$$\rho^{\text{ions}}(\mathbf{x}) = \sum_{i=1}^{N_{\text{ions}}} z_i e \lambda(\mathbf{x}) c_i^{\infty} \exp\left(\frac{-z_i e \tilde{\psi}(\mathbf{x})}{K_{\text{B}} T}\right)$$

¹Stein, Herbert, Head-Gordon: JCP, 151(22), 2019

Model Problem ddPB Method ddPB Derivation Numerical Studies Conclusions and Outlook

 $\circ \ \rho^{ions}(\mathbf{x})$: lonic charge distribution

$$\rho^{\text{ions}}(\mathbf{x}) = \sum_{i=1}^{N_{\text{ions}}} z_i e \lambda(\mathbf{x}) c_i^{\infty} \exp\left(\frac{-z_i e \tilde{\psi}(\mathbf{x})}{K_{\text{B}} T}\right)$$

• For 1:1 ionic solution¹

$$ho^{
m ions}(\mathbf{x}) = -2ce\lambda(\mathbf{x})\sinh\left(rac{e ilde{\psi}(\mathbf{x})}{K_{
m B}T}
ight)$$

 $-\lambda(\mathbf{x})$: Ion-exclusion function

Model Problem ddPB Method ddPB Derivation Numerical Studies Conclusions and Outlook

• For 1:1 solution Poisson-Boltzman (PB) Equation

$$-\nabla \cdot \left[\varepsilon_{\mathsf{abs}}\varepsilon(\mathbf{x})\nabla \tilde{\psi}(\mathbf{x})\right] + 2ec\lambda(\mathbf{x})\sinh\left(\frac{e\tilde{\psi}(\mathbf{x})}{K_{\mathsf{B}}T}\right) = \rho^{\mathsf{sol}}(\mathbf{x}) \quad \text{in } \ \mathbb{R}^{3}$$

¹Debye, Hückel: PZ 24(9), 185-206, 1923

Model Problem ddPB Method ddPB Derivation Numerical Studies Conclusions and Outlook

• For 1 : 1 solution Poisson-Boltzman (PB) Equation

$$-\nabla \cdot \left[\varepsilon_{\mathsf{abs}}\varepsilon(\mathbf{x})\nabla \tilde{\psi}(\mathbf{x})\right] + 2ec\lambda(\mathbf{x})\sinh\left(\frac{e\tilde{\psi}(\mathbf{x})}{\mathsf{K}_{\mathsf{B}}\mathsf{T}}\right) = \rho^{\mathsf{sol}}(\mathbf{x}) \quad \text{in } \ \mathbb{R}^{3}$$

• Dimensionless Poisson-Boltzman (PB) Equation

$$-\nabla \cdot [\varepsilon(\mathbf{x})\nabla\psi(\mathbf{x})] + \kappa^2 \varepsilon_{\rm s}\lambda(\mathbf{x})\sinh\left(\psi(\mathbf{x})\right) = \frac{1}{\beta\varepsilon_{\rm abs}}\rho^{\rm sol}(\mathbf{x}) \quad \text{in } \ \mathbb{R}^3$$

¹Debye, Hückel: PZ 24(9), 185-206, 1923

Model Problem ddPB Method ddPB Derivation Numerical Studies Conclusions and Outlook

• For 1 : 1 solution Poisson-Boltzman (PB) Equation

$$-\nabla \cdot \left[\varepsilon_{\mathsf{abs}}\varepsilon(\mathbf{x})\nabla \tilde{\psi}(\mathbf{x})\right] + 2ec\lambda(\mathbf{x})\sinh\left(\frac{e\tilde{\psi}(\mathbf{x})}{K_{\mathsf{B}}\mathsf{T}}\right) = \rho^{\mathsf{sol}}(\mathbf{x}) \quad \text{in } \ \mathbb{R}^{3}$$

• Dimensionless Poisson-Boltzman (PB) Equation

$$-\nabla \cdot [\varepsilon(\mathbf{x})\nabla\psi(\mathbf{x})] + \kappa^2 \varepsilon_{s}\lambda(\mathbf{x})\sinh\left(\psi(\mathbf{x})\right) = \frac{1}{\beta\varepsilon_{\mathsf{abs}}}\rho^{\mathsf{sol}}(\mathbf{x}) \quad \text{in } \ \mathbb{R}^3$$

• $\psi(\mathbf{x}) : \tilde{\psi}(\mathbf{x})\beta$ • κ : Debye Hückel Screening Constant ¹ • $\beta : e/K_{B}T$

¹Debye, Hückel: PZ 24(9), 185-206, 1923

Model Problem ddPB Method ddPB Derivation Numerical Studies Conclusions and Outlook

Model Problem ddPB Method ddPB Derivation Numerical Studies Conclusions and Outlook

Model Problem ddPB Method ddPB Derivation Numerical Studies Conclusions and Outlook

Model Problem ddPB Method ddPB Derivation Numerical Studies Conclusions and Outlook

Model Problem ddPB Method ddPB Derivation Numerical Studies Conclusions and Outlook

Permittivity and Ion-Exclusion Function

Model Problem ddPB Method ddPB Derivation Numerical Studies Conclusions and Outlook

• Dielectric Permittivity Function¹

$$\varepsilon(\mathbf{x}) = \begin{cases} 1 & \mathbf{x} \in \Omega_{\mathsf{SES}}, \\ 1 + (\varepsilon_{\mathsf{s}} - 1)\xi\left(\frac{f_{\mathsf{SAS}}(\mathbf{x}) + \mathbf{r}_{p} + a}{\mathbf{r}_{p} + a}\right) & \mathbf{x} \in \mathcal{L}_{\varepsilon}, \\ \varepsilon_{\mathsf{s}} & \mathsf{else}, \end{cases}$$

¹Quan, Stamm: JCP, 322, 760-782, 2016 ²Stern: ZFE, 30(21-22), 508, 1924

Permittivity and Ion-Exclusion Function

Model Problem ddPB Method ddPB Derivation Numerical Studies Conclusions and Outlook

• Dielectric Permittivity Function¹

$$\varepsilon(\mathbf{x}) = \begin{cases} 1 & \mathbf{x} \in \Omega_{\mathsf{SES}}, \\ 1 + (\varepsilon_{\mathsf{s}} - 1)\xi\left(\frac{f_{\mathsf{SAS}}(\mathbf{x}) + \mathbf{r}_{p} + a}{\mathbf{r}_{p} + a}\right) & \mathbf{x} \in \mathcal{L}_{\varepsilon}, \\ \varepsilon_{\mathsf{s}} & \mathsf{else}, \end{cases}$$

Ion-Exclusion Function²

$$\lambda(\mathbf{x}) = \begin{cases} 0 & \mathbf{x} \in \Omega_{\mathsf{SES}-\mathsf{S}}, \\ \xi\left(\frac{\mathsf{f}_{\mathsf{SAS}}(\mathbf{x}) + \mathsf{r}_p}{\mathsf{r}_p + a}\right) & \mathbf{x} \in \mathcal{L}_\lambda, \\ 1 & \text{else}, \end{cases}$$

¹Quan, Stamm: JCP, 322, 760-782, 2016 ²Stern: ZFE, 30(21-22), 508, 1924

Permittivity and Ion-Exclusion Function

Model Problem ddPB Method ddPB Derivation Numerical Studies Conclusions and Outlook

Linearity in Different Regions

- C: Constant, NC: Non-Constant
- L: Linear, NL: Non-Linear

Model Problem ddPB Method ddPB Derivation Numerical Studies Conclusions and Outlook

• The PB equation can be written in two equations

$$\begin{split} -\nabla \cdot \left[\varepsilon(\mathbf{x}) \nabla \psi(\mathbf{x}) \right] + \kappa^2 \varepsilon_s \lambda(\mathbf{x}) \sinh \left(\psi(\mathbf{x}) \right) &= \quad \frac{1}{\beta \varepsilon_{\text{abs}}} \rho^{\text{sol}}(\mathbf{x}) \qquad \text{in } \Omega_0, \\ -\Delta \psi(\mathbf{x}) + \kappa^2 \psi(\mathbf{x}) &= \quad 0 \qquad \qquad \text{in } \Omega_\infty, \end{split}$$

with

$$\begin{bmatrix} \boldsymbol{\psi} \end{bmatrix} = 0,$$

$$\begin{bmatrix} \partial_{\mathbf{n}} \boldsymbol{\psi} \end{bmatrix} = 0 \quad \text{on} \quad \Gamma_0 := \partial \Omega_0,$$

Model Problem ddPB Method ddPB Derivation Numerical Studies Conclusions and Outlook

• Using Potential Theory the final equations are

$$\begin{aligned} -\nabla \cdot \left[\varepsilon(\mathbf{x}) \nabla \psi_{\mathbf{r}}(\mathbf{x}) \right] + \kappa^2 \varepsilon_{\mathbf{s}} \lambda(\mathbf{x}) \mathcal{F} \left(\psi_{\mathbf{r}} + \psi_0 \right) \left(\psi_{\mathbf{r}} + \psi_0 \right) \left(\mathbf{x} \right) \\ = \nabla \cdot \left[\left(\varepsilon(\mathbf{x}) - 1 \right) \nabla \psi_0(\mathbf{x}) \right] & \text{in } \Omega_0 \quad [\mathsf{GSP}] \end{aligned}$$

Model Problem ddPB Method ddPB Derivation Numerical Studies Conclusions and Outlook

• Using Potential Theory the final equations are

$$\begin{aligned} -\nabla \cdot \left[\varepsilon(\mathbf{x}) \nabla \psi_{\mathsf{r}}(\mathbf{x}) \right] + \kappa^{2} \varepsilon_{\mathsf{s}} \lambda(\mathbf{x}) \mathcal{F} \left(\psi_{\mathsf{r}} + \psi_{0} \right) \left(\psi_{\mathsf{r}} + \psi_{0} \right) \left(\mathbf{x} \right) \\ = \nabla \cdot \left[\left(\varepsilon(\mathbf{x}) - 1 \right) \nabla \psi_{0}(\mathbf{x}) \right] & \text{in } \Omega_{0} \quad [\mathsf{GSP}] \end{aligned}$$

$$-\Delta\psi_{\mathsf{e}}(\mathbf{x}) + \kappa^{2}\psi_{\mathsf{e}}(\mathbf{x}) = 0 \quad \text{in } \Omega_{0} \quad [\mathsf{HSP}]$$

Model Problem ddPB Method ddPB Derivation Numerical Studies Conclusions and Outlook

• Using Potential Theory the final equations are

$$\begin{aligned} -\nabla \cdot \left[\varepsilon(\mathbf{x}) \nabla \psi_{\mathbf{r}}(\mathbf{x}) \right] + \kappa^2 \varepsilon_{\mathbf{s}} \lambda(\mathbf{x}) \mathcal{F} \left(\psi_{\mathbf{r}} + \psi_0 \right) \left(\psi_{\mathbf{r}} + \psi_0 \right) \left(\mathbf{x} \right) \\ = \nabla \cdot \left[\left(\varepsilon(\mathbf{x}) - 1 \right) \nabla \psi_0(\mathbf{x}) \right] & \text{in } \Omega_0 \quad \text{[GSP]} \end{aligned}$$

$$-\Delta\psi_{\mathsf{e}}(\mathbf{x}) + \kappa^{2}\psi_{\mathsf{e}}(\mathbf{x}) = 0 \quad \text{in } \Omega_{0} \quad [\mathsf{HSP}]$$

with

$$\begin{split} \psi_0 + \psi_{\mathsf{r}} &= \psi_{\mathsf{e}} \quad \text{on } \Gamma_0, \\ \psi_{\mathsf{e}} &= \mathbf{S}_{\kappa} \sigma_{\mathsf{e}} \qquad \text{on } \Gamma_0 \end{split}$$

Model Problem ddPB Method ddPB Derivation Numerical Studies Conclusions and Outlook

• Using Potential Theory the final equations are

$$\begin{aligned} -\nabla \cdot \left[\varepsilon(\mathbf{x}) \nabla \psi_{\mathbf{r}}(\mathbf{x}) \right] + \kappa^2 \varepsilon_{\mathbf{s}} \lambda(\mathbf{x}) \mathcal{F} \left(\psi_{\mathbf{r}} + \psi_0 \right) \left(\psi_{\mathbf{r}} + \psi_0 \right) \left(\mathbf{x} \right) \\ = \nabla \cdot \left[\left(\varepsilon(\mathbf{x}) - 1 \right) \nabla \psi_0(\mathbf{x}) \right] & \text{in } \Omega_0 \quad \text{[GSP]} \end{aligned}$$

$$-\Delta\psi_{\mathsf{e}}(\mathbf{x}) + \kappa^{2}\psi_{\mathsf{e}}(\mathbf{x}) = 0 \quad \text{in } \Omega_{0} \quad [\mathsf{HSP}]$$

with

$$\begin{split} \psi_0 + \psi_{\mathsf{r}} &= \psi_{\mathsf{e}} \quad \text{on } \Gamma_0, \\ \psi_{\mathsf{e}} &= \mathbf{S}_{\kappa} \sigma_{\mathsf{e}} \qquad \text{on } \Gamma_0 \end{split}$$

where

- $\circ \ \psi_{\mathbf{r}}$: Reaction potential in Ω
- $\circ \ \psi_0$: Potential generated by ρ_{M} satisfying,

$$-\Delta\psi_0 = \frac{1}{\beta\varepsilon_{\rm abs}}\rho_{\rm M}$$

Model Problem ddPB Method ddPB Derivation Numerical Studies Conclusions and Outlook

$\circ \ \psi_{\mathsf{e}}$: Extended potential from Ω^{C} to Ω^{0}

¹Sauter, Schwab, Springer, Berlin-2011, 101-181

Model Problem ddPB Method ddPB Derivation Numerical Studies Conclusions and Outlook

• ψ_{e} : Extended potential from Ω^{C} to Ω^{0} • $\mathcal{F}(\Phi) = \frac{\sinh(\Phi)}{\Phi}$

¹Sauter, Schwab, Springer, Berlin-2011, 101-181

Model Problem ddPB Method ddPB Derivation Numerical Studies Conclusions and Outlook

•
$$\psi_{e}$$
 : Extended potential from Ω^{C} to Ω^{0}
• $\mathcal{F}(\Phi) = \frac{\sinh(\Phi)}{\Phi}$
• σ_{e} : Charge density generating ψ_{e} satisfying

$$\mathbf{S}_{\kappa}\boldsymbol{\sigma}_{\mathbf{e}}(\mathbf{x}) = \int_{\Gamma_0} \frac{\exp\left(-\kappa |\mathbf{x} - \mathbf{y}|\right)\boldsymbol{\sigma}_{\mathbf{e}}(\mathbf{y})}{4\pi |\mathbf{x} - \mathbf{y}|} = \psi_{\mathbf{e}} \quad \forall \ \mathbf{x} \in \Gamma_0$$

 $\circ~{\rm S}_{\kappa}$: Invertible single-layer potential operator ^1

 $\mathbf{S}_{\boldsymbol{\kappa}}: \mathbf{H}^{-1/2}(\Gamma_0) \to \mathbf{H}^{1/2}(\Gamma_0)$

¹Sauter, Schwab, Springer, Berlin-2011, 101-181

Model Problem ddPB Method ddPB Derivation Numerical Studies Conclusions and Outlook

12

Model Problem ddPB Method ddPB Derivation Nun	erical Studies Conclusions and Outlook
---	--

Model Problem ddPB Method ddPB Derivation Nun	erical Studies Conclusions and Outlook
---	--

Model Problem ddPB Method ddPB Derivation	Numerical Studies		
---	-------------------	--	--

Model Problem ddPB Method ddPB Derivation Numerical Studies Conclusions and Outlook

• We can decompose Ω_0

$$\Omega_0 = \bigcup_{j=1}^{\mathsf{M}} \Omega_j, \qquad \Omega_j = \mathsf{B}_{\mathsf{R}_j}(\mathbf{x}_j)$$

 $\circ \ \mathbf{R}_{\mathbf{j}} = \mathbf{r}_{\mathbf{j}} + \mathbf{a} + \mathbf{r}_0 + \mathbf{r}_{\mathbf{p}}$

- ⁵Gatto, Lipparini, Stamm: JCP 147, 224108, 2017
- ⁶Quan, Stamm, Maday: SISC 41(2), B320-B350, 2019
- ⁷ J., Nottoli, Mikhalev, Quan, Stamm: JCP 158, 104105, 2023

⁸Nottoli, Herbst, J., Lipparini, Mikhalev, Stamm: ddX: https://github.com/ddsolvation/ddX

¹Cances, Maday, Stamm: JCP 139(5), 054111, 2013

²Lipparini, Stamm, Cances, Maday, Mennucci: JCTC 9(8), 3637-3648, 2013

³Lipparini, et.al.: JPCL 5(4), 953-958, 2014

⁴Stamm, Cances, Lipparini, Maday: JCP 144, 054101, 2016

Model Problem ddPB Method ddPB Derivation Numerical Studies Conclusions and Outlook

• We can decompose Ω₀

$$\Omega_0 = \bigcup_{j=1}^{\mathsf{M}} \Omega_j, \qquad \Omega_j = \mathsf{B}_{\mathsf{R}_j}(\mathbf{x}_j)$$

- $\circ \ \mathbf{R}_{\mathbf{j}} = \mathbf{r}_{\mathbf{j}} + \mathbf{a} + \mathbf{r}_0 + \mathbf{r}_{\mathbf{p}}$
- History of dd-methods
 - ddCOSMO: COnductor-like Screening MOdel^{1,2,3}

- ⁵Gatto, Lipparini, Stamm: JCP 147, 224108, 2017
- ⁶Quan, Stamm, Maday: SISC 41(2), B320-B350, 2019
- ⁷ J., Nottoli, Mikhalev, Quan, Stamm: JCP 158, 104105, 2023

⁸Nottoli, Herbst, J., Lipparini, Mikhalev, Stamm: ddX: https://github.com/ddsolvation/ddX

¹Cances, Maday, Stamm: JCP 139(5), 054111, 2013

²Lipparini, Stamm, Cances, Maday, Mennucci: JCTC 9(8), 3637-3648, 2013

³Lipparini, et.al.: JPCL 5(4), 953-958, 2014

⁴Stamm, Cances, Lipparini, Maday: JCP 144, 054101, 2016

Model Problem ddPB Method ddPB Derivation Numerical Studies Conclusions and Outlook

• We can decompose Ω_0

$$\Omega_0 = \bigcup_{j=1}^{\mathsf{M}} \Omega_j, \qquad \Omega_j = \mathsf{B}_{\mathsf{R}_j}(\mathsf{x}_j)$$

- $\circ \ \mathbf{R}_{\mathbf{j}} = \mathbf{r}_{\mathbf{j}} + \mathbf{a} + \mathbf{r}_0 + \mathbf{r}_{\mathbf{p}}$
- History of dd-methods
 - ddCOSMO: COnductor-like Screening MOdel^{1,2,3}
 - ddPCM: Polarizable Continuum Model^{4,5}

- ⁴Stamm, Cances, Lipparini, Maday: JCP 144, 054101, 2016
- ⁵Gatto, Lipparini, Stamm: JCP 147, 224108, 2017
- ⁶Quan, Stamm, Maday: SISC 41(2), B320-B350, 2019
- ⁷ J., Nottoli, Mikhalev, Quan, Stamm: JCP 158, 104105, 2023

⁸Nottoli, Herbst, J., Lipparini, Mikhalev, Stamm: ddX: https://github.com/ddsolvation/ddX

¹Cances, Maday, Stamm: JCP 139(5), 054111, 2013

²Lipparini, Stamm, Cances, Maday, Mennucci: JCTC 9(8), 3637-3648, 2013

³Lipparini, et.al.: JPCL 5(4), 953-958, 2014

Model Problem ddPB Method ddPB Derivation Numerical Studies Conclusions and Outlook

• We can decompose Ω_0

$$\Omega_0 = \bigcup_{j=1}^{\mathsf{M}} \Omega_j, \qquad \Omega_j = \mathsf{B}_{\mathsf{R}_j}(\mathbf{x}_j)$$

- $\circ \ \mathbf{R}_{\mathbf{j}} = \mathbf{r}_{\mathbf{j}} + \mathbf{a} + \mathbf{r}_0 + \mathbf{r}_{\mathbf{p}}$
- History of dd-methods
 - ddCOSMO: COnductor-like Screening MOdel^{1,2,3}
 - ddPCM: Polarizable Continuum Model^{4,5}
 - ddLPB: Linear Poisson-Boltzmann^{6,7}

- ⁴Stamm, Cances, Lipparini, Maday: JCP 144, 054101, 2016
- ⁵Gatto, Lipparini, Stamm: JCP 147, 224108, 2017
- ⁶Quan, Stamm, Maday: SISC 41(2), B320-B350, 2019
- ⁷ J., Nottoli, Mikhalev, Quan, Stamm: JCP 158, 104105, 2023
- ⁸Nottoli, Herbst, J., Lipparini, Mikhalev, Stamm: ddX: https://github.com/ddsolvation/ddX

¹Cances, Maday, Stamm: JCP 139(5), 054111, 2013

²Lipparini, Stamm, Cances, Maday, Mennucci: JCTC 9(8), 3637-3648, 2013

³Lipparini, et.al.: JPCL 5(4), 953-958, 2014
ddPB-Method

Model Problem ddPB Method ddPB Derivation Numerical Studies Conclusions and Outlook

• We can decompose Ω₀

$$\Omega_0 = \bigcup_{j=1}^{\mathsf{M}} \Omega_j, \qquad \Omega_j = \mathsf{B}_{\mathsf{R}_j}(\mathbf{x}_j)$$

- $\circ \ \mathbf{R}_{\mathbf{j}} = \mathbf{r}_{\mathbf{j}} + \mathbf{a} + \mathbf{r}_0 + \mathbf{r}_{\mathbf{p}}$
- History of dd-methods
 - ddCOSMO: COnductor-like Screening MOdel^{1,2,3}
 - ddPCM: Polarizable Continuum Model^{4,5}
 - ddLPB: Linear Poisson-Boltzmann^{6,7}
 - ddX⁸

¹Cances, Maday, Stamm: JCP 139(5), 054111, 2013

²Lipparini, Stamm, Cances, Maday, Mennucci: JCTC 9(8), 3637-3648, 2013

³Lipparini, et.al.: JPCL 5(4), 953-958, 2014

⁴Stamm, Cances, Lipparini, Maday: JCP 144, 054101, 2016

⁵Gatto, Lipparini, Stamm: JCP 147, 224108, 2017

⁶Quan, Stamm, Maday: SISC 41(2), B320-B350, 2019

⁷ J., Nottoli, Mikhalev, Quan, Stamm: JCP 158, 104105, 2023

⁸Nottoli, Herbst, J., Lipparini, Mikhalev, Stamm: ddX: https://github.com/ddsolvation/ddX

Model Problem ddPB Method ddPB Derivation Numerical Studies Conclusions and Outlook

• GSP equation in unit ball

$$\begin{split} -\nabla \cdot \left[\tilde{\varepsilon}(\mathbf{x}) \nabla u(\mathbf{x}) \right] + \tilde{\lambda}(\mathbf{x}) \tilde{\mathcal{F}} \left(\overline{u}(\mathbf{x}) \right) u(\mathbf{x}) &= f(\mathbf{x}) \quad \text{in } B_1(\mathbf{0}) \\ u(\mathbf{x}) &= \phi_r(\mathbf{x}) \quad \text{on } \partial B_1(\mathbf{0}) \end{split}$$

Model Problem ddPB Method ddPB Derivation Numerical Studies Conclusions and Outlook

• GSP equation in unit ball

$$\begin{aligned} -\nabla \cdot \left[\tilde{\varepsilon}(\mathbf{x}) \nabla u(\mathbf{x}) \right] + \tilde{\lambda}(\mathbf{x}) \tilde{\mathcal{F}} \left(\overline{u}(\mathbf{x}) \right) u(\mathbf{x}) &= f(\mathbf{x}) \quad \text{in } B_1(\mathbf{0}) \\ u(\mathbf{x}) &= \phi_r(\mathbf{x}) \quad \text{on } \partial B_1(\mathbf{0}) \end{aligned}$$

• Transformation to Homogeneous Problem

$$\begin{aligned} -\nabla \cdot \left[\tilde{\varepsilon}(\mathbf{x}) \nabla \mathbf{w}(\mathbf{x}) \right] + \tilde{\lambda}(\mathbf{x}) \tilde{\mathcal{F}} \left(\left(\overline{\mathbf{w} + \hat{u}_1} \right)(\mathbf{x}) \right) \mathbf{w}(\mathbf{x}) &= \tilde{f}(\mathbf{x}), \quad \text{ in } B_1(\mathbf{0}) \\ \mathbf{w}(\mathbf{x}) &= 0 \quad \text{ on } \partial B_1(\mathbf{0}), \end{aligned}$$

Model Problem ddPB Method ddPB Derivation Numerical Studies Conclusions and Outlook

• GSP equation in unit ball

$$\begin{aligned} -\nabla \cdot \left[\tilde{\varepsilon}(\mathbf{x}) \nabla u(\mathbf{x})\right] + \tilde{\lambda}(\mathbf{x}) \tilde{\mathcal{F}}\left(\overline{u}(\mathbf{x})\right) u(\mathbf{x}) &= f(\mathbf{x}) \quad \text{in } B_1(\mathbf{0}) \\ u(\mathbf{x}) &= \phi_r(\mathbf{x}) \quad \text{on } \partial B_1(\mathbf{0}) \end{aligned}$$

• Transformation to Homogeneous Problem

$$\begin{aligned} -\nabla \cdot \left[\tilde{\varepsilon}(\mathbf{x})\nabla \mathbf{w}(\mathbf{x})\right] + \tilde{\lambda}(\mathbf{x})\tilde{\mathcal{F}}\left(\left(\overline{\mathbf{w} + \hat{u}_1}\right)(\mathbf{x})\right)\mathbf{w}(\mathbf{x}) &= \tilde{f}(\mathbf{x}), \quad \text{ in } B_1(\mathbf{0})\\ \mathbf{w}(\mathbf{x}) &= 0 \quad \text{ on } \partial B_1(\mathbf{0}), \end{aligned}$$

$$\circ \mathbf{w}(\mathbf{x}) = \mathbf{u}(\mathbf{x}) - \hat{u}_1(\mathbf{x})$$

$$\circ \tilde{\mathbf{f}}(\mathbf{x}) = \mathbf{f}(\mathbf{x}) + \nabla \cdot [\tilde{\varepsilon}(\mathbf{x})\nabla \hat{u}_1(\mathbf{x})] - \tilde{\lambda}(\mathbf{x})\tilde{\mathcal{F}}\left(\left(\overline{\mathbf{w} + \hat{u}_1}\right)(\mathbf{x})\right) \hat{u}_1(\mathbf{x})$$

Model Problem ddPB Method ddPB Derivation Numerical Studies Conclusions and Outlook

• GSP equation in unit ball

$$\begin{aligned} -\nabla \cdot \left[\tilde{\varepsilon}(\mathbf{x}) \nabla u(\mathbf{x})\right] + \tilde{\lambda}(\mathbf{x}) \tilde{\mathcal{F}}\left(\overline{u}(\mathbf{x})\right) u(\mathbf{x}) &= f(\mathbf{x}) \quad \text{in } B_1(\mathbf{0}) \\ u(\mathbf{x}) &= \phi_r(\mathbf{x}) \quad \text{on } \partial B_1(\mathbf{0}) \end{aligned}$$

• Transformation to Homogeneous Problem

$$\begin{aligned} -\nabla \cdot \left[\tilde{\varepsilon}(\mathbf{x})\nabla \mathbf{w}(\mathbf{x})\right] + \tilde{\lambda}(\mathbf{x})\tilde{\mathcal{F}}\left(\left(\overline{\mathbf{w} + \hat{u}_1}\right)(\mathbf{x})\right)\mathbf{w}(\mathbf{x}) &= \tilde{f}(\mathbf{x}), \quad \text{ in } B_1(\mathbf{0})\\ \mathbf{w}(\mathbf{x}) &= 0 \quad \text{ on } \partial B_1(\mathbf{0}), \end{aligned}$$

 $\circ \mathbf{w}(\mathbf{x}) = \mathbf{u}(\mathbf{x}) - \hat{u}_1(\mathbf{x}) \\ \circ \tilde{f}(\mathbf{x}) = f(\mathbf{x}) + \nabla \cdot [\tilde{\varepsilon}(\mathbf{x})\nabla \hat{u}_1(\mathbf{x})] - \tilde{\lambda}(\mathbf{x})\tilde{\mathcal{F}}\left(\left(\overline{\mathbf{w} + \hat{u}_1}\right)(\mathbf{x})\right) \hat{u}_1(\mathbf{x}) \\ \circ \hat{u}_1(\mathbf{x}) : \text{Laplace solution satisfying the boundary condition}$

Model Problem ddPB Method ddPB Derivation Numerical Studies Conclusions and Outlook

• GSP equation in unit ball

$$\begin{aligned} -\nabla \cdot \left[\tilde{\varepsilon}(\mathbf{x}) \nabla u(\mathbf{x})\right] + \tilde{\lambda}(\mathbf{x}) \tilde{\mathcal{F}}\left(\overline{u}(\mathbf{x})\right) u(\mathbf{x}) &= f(\mathbf{x}) \quad \text{in } B_1(\mathbf{0}) \\ u(\mathbf{x}) &= \phi_r(\mathbf{x}) \quad \text{on } \partial B_1(\mathbf{0}) \end{aligned}$$

• Transformation to Homogeneous Problem

$$\begin{aligned} -\nabla \cdot \left[\tilde{\varepsilon}(\mathbf{x})\nabla \mathbf{w}(\mathbf{x})\right] + \tilde{\lambda}(\mathbf{x})\tilde{\mathcal{F}}\left(\left(\overline{\mathbf{w} + \hat{u}_1}\right)(\mathbf{x})\right)\mathbf{w}(\mathbf{x}) &= \tilde{f}(\mathbf{x}), \quad \text{ in } B_1(\mathbf{0})\\ \mathbf{w}(\mathbf{x}) &= 0 \quad \text{ on } \partial B_1(\mathbf{0}), \end{aligned}$$

 $\begin{array}{l} \circ \ \mathbf{w}(\mathbf{x}) = \mathbf{u}(\mathbf{x}) - \hat{u}_{1}(\mathbf{x}) \\ \circ \ \tilde{f}(\mathbf{x}) = f(\mathbf{x}) + \nabla \cdot [\tilde{\varepsilon}(\mathbf{x})\nabla \hat{u}_{1}(\mathbf{x})] - \tilde{\lambda}(\mathbf{x})\tilde{\mathcal{F}}\left(\left(\overline{\mathbf{w} + \hat{u}_{1}}\right)(\mathbf{x})\right) \hat{u}_{1}(\mathbf{x}) \\ \circ \ \hat{u}_{1}(\mathbf{x}) : \text{Laplace solution satisfying the boundary condition} \\ \bullet \ B_{r_{i}}(\mathbf{x}_{j}) \subset \Omega_{j} \end{array}$

Model Problem ddPB Method ddPB Derivation Numerical Studies Conclusions and Outlook

• GSP equation in unit ball

$$\begin{aligned} -\nabla \cdot \left[\tilde{\varepsilon}(\mathbf{x}) \nabla u(\mathbf{x})\right] + \tilde{\lambda}(\mathbf{x}) \tilde{\mathcal{F}}\left(\overline{u}(\mathbf{x})\right) u(\mathbf{x}) &= f(\mathbf{x}) \quad \text{in } B_1(\mathbf{0}) \\ u(\mathbf{x}) &= \phi_r(\mathbf{x}) \quad \text{on } \partial B_1(\mathbf{0}) \end{aligned}$$

• Transformation to Homogeneous Problem

$$\begin{aligned} -\nabla \cdot \left[\tilde{\varepsilon}(\mathbf{x})\nabla \mathbf{w}(\mathbf{x})\right] + \tilde{\lambda}(\mathbf{x})\tilde{\mathcal{F}}\left(\left(\overline{\mathbf{w} + \hat{u}_1}\right)(\mathbf{x})\right)\mathbf{w}(\mathbf{x}) &= \tilde{f}(\mathbf{x}), \quad \text{ in } B_1(\mathbf{0})\\ \mathbf{w}(\mathbf{x}) &= 0 \quad \text{ on } \partial B_1(\mathbf{0}), \end{aligned}$$

- $\circ \mathbf{w}(\mathbf{x}) = \mathbf{u}(\mathbf{x}) \hat{u}_{1}(\mathbf{x})$ $\circ \tilde{\mathbf{f}}(\mathbf{x}) = \mathbf{f}(\mathbf{x}) + \nabla \cdot [\tilde{\varepsilon}(\mathbf{x})\nabla\hat{u}_{1}(\mathbf{x})] - \tilde{\lambda}(\mathbf{x})\tilde{\mathcal{F}}\left(\left(\overline{\mathbf{w} + \hat{u}_{1}}\right)(\mathbf{x})\right)\hat{u}_{1}(\mathbf{x})$
- $\hat{u}_1(\mathbf{x})$: Laplace solution satisfying the boundary condition
- $B_{\mathbf{r}_j}(\mathbf{x}_j) \subset \Omega_j$
 - $\psi_{\mathbf{r}}(\mathbf{x})$ is harmonic in $B_{\mathbf{r}_j}(\mathbf{x}_j)$

Model Problem ddPB Method ddPB Derivation Numerical Studies Conclusions and Outlook

• GSP equation in unit ball

$$\begin{aligned} -\nabla \cdot \left[\tilde{\varepsilon}(\mathbf{x}) \nabla u(\mathbf{x})\right] + \tilde{\lambda}(\mathbf{x}) \tilde{\mathcal{F}}\left(\overline{u}(\mathbf{x})\right) u(\mathbf{x}) &= f(\mathbf{x}) \quad \text{in } B_1(\mathbf{0}) \\ u(\mathbf{x}) &= \phi_r(\mathbf{x}) \quad \text{on } \partial B_1(\mathbf{0}) \end{aligned}$$

• Transformation to Homogeneous Problem

$$\begin{aligned} -\nabla \cdot \left[\tilde{\varepsilon}(\mathbf{x})\nabla \mathbf{w}(\mathbf{x})\right] + \tilde{\lambda}(\mathbf{x})\tilde{\mathcal{F}}\left(\left(\overline{\mathbf{w} + \hat{u}_1}\right)(\mathbf{x})\right)\mathbf{w}(\mathbf{x}) &= \tilde{f}(\mathbf{x}), \quad \text{ in } B_1(\mathbf{0})\\ \mathbf{w}(\mathbf{x}) &= 0 \quad \text{ on } \partial B_1(\mathbf{0}), \end{aligned}$$

- $\circ \mathbf{w}(\mathbf{x}) = \mathbf{u}(\mathbf{x}) \hat{u}_{1}(\mathbf{x})$ $\circ \tilde{\mathbf{f}}(\mathbf{x}) = \mathbf{f}(\mathbf{x}) + \nabla \cdot \left[\tilde{\varepsilon}(\mathbf{x})\nabla\hat{u}_{1}(\mathbf{x})\right] - \tilde{\lambda}(\mathbf{x})\tilde{\mathcal{F}}\left(\left(\overline{\mathbf{w} + \hat{u}_{1}}\right)(\mathbf{x})\right)\hat{u}_{1}(\mathbf{x})$
- $\hat{u}_1(\mathbf{x})$: Laplace solution satisfying the boundary condition
- $B_{\mathbf{r}_j}(\mathbf{x}_j) \subset \Omega_j$
 - $\psi_{\mathbf{r}}(\mathbf{x})$ is harmonic in $B_{\mathbf{r}_i}(\mathbf{x}_j)$
 - $\mathbf{w}(\mathbf{x})$ is harmonic in $B_{\delta}(\mathbf{0})$ where

$$\delta = \frac{\mathbf{r}_j}{\mathbf{r}_j + \mathbf{r}_0 + \mathbf{r}_p + a} \in (0, 1)$$

Model Problem ddPB Method ddPB Derivation Numerical Studies Conclusions and Outlook

• Find $\mathbf{w} \in H^1_{0,\delta}(\mathcal{D})$ such that

$$\begin{split} \int_{\mathcal{D}} \tilde{\varepsilon}(\mathbf{x}) \nabla w(\mathbf{x}) \nabla \tilde{w}(\mathbf{x}) &+ \int_{\mathcal{D}} \tilde{\lambda}(\mathbf{x}) \tilde{\mathcal{F}}\left(\overline{w}(\mathbf{x})\right) w(\mathbf{x}) \tilde{w}(\mathbf{x}) \\ &+ \int_{\partial \mathsf{B}_{\delta}(\mathbf{0})} \left(\mathcal{T}w\right) \tilde{w}(\mathbf{x}) = \int_{\mathcal{D}} \tilde{f}(\mathbf{x}) \tilde{w}(\mathbf{x}) \quad \forall \ \tilde{w} \in H^{1}_{0,\delta}(\mathcal{D}), \end{split}$$

Model Problem ddPB Method ddPB Derivation Numerical Studies Conclusions and Outlook

• Find $\mathbf{w} \in H^1_{0,\delta}(\mathcal{D})$ such that

$$\begin{split} \int_{\mathcal{D}} \tilde{\varepsilon}(\mathbf{x}) \nabla \mathbf{w}(\mathbf{x}) \nabla \tilde{w}(\mathbf{x}) &+ \int_{\mathcal{D}} \tilde{\lambda}(\mathbf{x}) \tilde{\mathcal{F}}(\overline{\mathbf{w}}(\mathbf{x})) \, \mathbf{w}(\mathbf{x}) \tilde{w}(\mathbf{x}) \\ &+ \int_{\partial B_{\delta}(\mathbf{0})} \left(\mathcal{T} \mathbf{w} \right) \tilde{w}(\mathbf{x}) = \int_{\mathcal{D}} \tilde{\mathbf{f}}(\mathbf{x}) \tilde{w}(\mathbf{x}) \quad \forall \ \tilde{w} \in H^{1}_{0,\delta}(\mathcal{D}), \end{split}$$

$$\circ \ \mathcal{D} = \mathsf{B}_1(\mathbf{0}) \setminus \mathsf{B}_{\delta}(\mathbf{0}) \\ \circ \ \mathsf{H}_{0,\delta}^1(\mathcal{D}) = \left\{ \mathsf{w} \in \mathsf{H}^1(\mathcal{D}) : \mathsf{w}|_{\partial \mathsf{B}_1(\mathbf{0})} = 0 \right\}$$

Model Problem ddPB Method ddPB Derivation Numerical Studies Conclusions and Outlook

• Find $\mathbf{w} \in H^1_{0,\delta}(\mathcal{D})$ such that

$$\begin{split} \int_{\mathcal{D}} \tilde{\varepsilon}(\mathbf{x}) \nabla \mathbf{w}(\mathbf{x}) \nabla \tilde{w}(\mathbf{x}) &+ \int_{\mathcal{D}} \tilde{\lambda}(\mathbf{x}) \tilde{\mathcal{F}}\left(\overline{\mathbf{w}}(\mathbf{x})\right) \mathbf{w}(\mathbf{x}) \tilde{w}(\mathbf{x}) \\ &+ \int_{\partial \mathcal{B}_{\delta}(\mathbf{0})} \left(\mathcal{T}\mathbf{w}\right) \tilde{w}(\mathbf{x}) = \int_{\mathcal{D}} \tilde{\mathbf{f}}(\mathbf{x}) \tilde{w}(\mathbf{x}) \quad \forall \ \tilde{w} \in H^{1}_{0,\delta}(\mathcal{D}), \end{split}$$

$$\circ \ \begin{array}{l} \mathcal{D} = \mathcal{B}_1(\mathbf{0}) \setminus \mathcal{B}_{\delta}(\mathbf{0}) \\ \circ \ \mathcal{H}_{0,\delta}^1(\mathcal{D}) = \left\{ \mathbf{w} \in \mathcal{H}^1(\mathcal{D}) : \mathbf{w}|_{\partial \mathcal{B}_1(\mathbf{0})} = 0 \right\} \end{array}$$

Using Galerkin discretisation

$$\mathsf{w}_{\mathcal{B}}(\mathbf{r},\theta,\varphi) = \sum_{\mathbf{i}=0}^{\mathsf{N}} \sum_{\ell=0}^{\ell_{\max}} \sum_{\mathbf{m}=-\ell}^{\ell} [\phi_{\mathbf{r}}]_{\mathbf{i}\ell}^{\mathbf{m}} \varrho_{\mathbf{i}}(\mathbf{r}) \mathbf{Y}_{\ell}^{\mathbf{m}}(\theta,\varphi) \quad \forall \ \delta \leq \mathbf{r} \leq 1; \quad 0 \leq \theta \leq \pi; \quad 0 \leq \varphi \leq 2\pi,$$

- ϱ_i : Legendre polynomial of order *i*
- N : Maximum degree of Legendre polynomial of order ϱ_i
- Y_{ℓ}^m : Spherical Harmonic Basis
- ℓ_{max} : Maximum degree of Y_{ℓ}^m

Model Problem ddPB Method ddPB Derivation Numerical Studies Conclusions and Outlook

• System of Equation

$$\mathbf{AX}_{\mathbf{r}} = \mathbf{F}$$

where

• $k(:= N(\ell^2 + m + 1) + i \in \{1, 2, ..., N(\ell_{max} + 1)^2\}), k' \text{ entry}$

$$\begin{aligned} [\mathbf{A}]_{\mathbf{k},\mathbf{k}'} &= \int_{\mathcal{D}} \tilde{\varepsilon}(\mathbf{x}) \nabla \left(\varrho_{i} \mathbf{Y}_{\ell}^{m} \right) \cdot \nabla \left(\varrho_{j} \mathbf{Y}_{\ell'}^{m'} \right) \\ &+ \int_{\mathcal{D}} \tilde{\lambda}(\mathbf{x}) \tilde{\mathcal{F}} \left(\overline{\tilde{\mathbf{w}}}(\mathbf{x}) \right) \varrho_{i} \mathbf{Y}_{\ell}^{m} \varrho_{j} \mathbf{Y}_{\ell'}^{m} \\ &+ \frac{\ell}{\delta} \int_{\partial \mathbf{B}_{\delta}(\mathbf{0})} \varrho_{i} \mathbf{Y}_{\ell}^{m} \varrho_{j} \mathbf{Y}_{\ell'}^{m'}, \end{aligned}$$

$$[\mathbf{F}]_{\mathbf{k}} = \int_{\mathcal{D}} \tilde{f}_{\boldsymbol{\ell} \mathbf{j}} \mathbf{Y}_{\boldsymbol{\ell}'}^{\mathbf{m}'} \quad \forall \ \mathbf{k} \in \{1, \dots, \mathsf{N}(\ell_{\mathsf{max}} + 1)^2\}.$$

Model Problem ddPB Method ddPB Derivation Numerical Studies Conclusions and Outlook

• HSP equation in unit ball ¹

$$\begin{aligned} -\Delta u_{\mathsf{e}} + \kappa^2 u_{\mathsf{e}}^2 &= 0 \quad \text{ in } B_1(\mathbf{0}), \\ u_{\mathsf{e}} &= \phi_{\mathsf{e}} \quad \text{ on } \mathbb{S}^2 \end{aligned}$$

• $u_{\rm e}$ can be numerically approximated by $\tilde{u}_{\rm e}$

$$\tilde{\mathbf{u}}_{\mathbf{e}}(\mathbf{r},\theta,\varphi) = \sum_{\ell=0}^{\ell_{\max}} \sum_{m=-\ell}^{\ell} \left[\tilde{\phi}_{\mathbf{e}} \right]_{\ell}^{m} \frac{i_{\ell}(\mathbf{r})}{i_{\ell}(1)} \mathbf{Y}_{\ell}^{m}(\theta,\varphi)$$

for $0 \le \mathbf{r} \le 1, \ 0 \le \theta \le \pi, \ 0 \le \varphi < 2\pi$

Model Problem ddPB Method ddPB Derivation Numerical Studies Conclusions and Outlook

• HSP equation in unit ball ¹

$$\begin{aligned} -\Delta u_{\mathsf{e}} + \kappa^2 u_{\mathsf{e}}^2 &= 0 \quad \text{ in } B_1(\mathbf{0}), \\ u_{\mathsf{e}} &= \phi_{\mathsf{e}} \quad \text{ on } \mathbb{S}^2 \end{aligned}$$

• $u_{\rm e}$ can be numerically approximated by $\tilde{u}_{\rm e}$

$$\tilde{\mathbf{u}}_{\mathbf{e}}(\mathbf{r},\boldsymbol{\theta},\varphi) = \sum_{\ell=0}^{\boldsymbol{\ell}_{\max}} \sum_{m=-\ell}^{\boldsymbol{\ell}} \left[\tilde{\phi}_{\mathbf{e}} \right]_{\ell}^{m} \frac{\mathbf{i}_{\ell}(\mathbf{r})}{\mathbf{i}_{\ell}(1)} \mathbf{Y}_{\ell}^{m}(\boldsymbol{\theta},\varphi)$$

for
$$0 \le r \le 1, \ 0 \le \theta \le \pi, \ 0 \le \varphi < 2\pi$$

 $\circ \left[\tilde{\phi}_{\mathsf{e}}\right]_{\ell}^{m}$: Numerical approximation of $\left[\phi_{\mathsf{e}}\right]_{\ell}^{m_{2}}$

$$\left[\tilde{\phi}_{\mathsf{e}}\right]_{\ell}^{m} = \sum_{n=1}^{N_{\mathsf{leb}}} \omega_{\mathsf{n}}^{\mathsf{leb}} \phi_{\mathsf{e}}(\mathsf{s}_{\mathsf{n}}) \mathbf{Y}_{\ell}^{\mathsf{m}}(\mathsf{s}_{\mathsf{n}})$$

¹Quan, Stamm, Maday: SISC, 41(2), B320-B350, 2019

²Lebedev: ZVMMF, 16(2), 293-306, 1976

Model Problem ddPB Method ddPB Derivation Numerical Studies Conclusions and Outlook

• Numerical Integration^{1,2}

¹Haxton: J.Phy.B, 40, 4443, 2007 ²Parter: JSC, 14, 347-355, 1999

Model Problem ddPB Method ddPB Derivation Numerical Studies Conclusions and Outlook

• Numerical Integration^{1,2}

$$\begin{split} \int_{\mathcal{D}} \mathbf{h}(\mathbf{x}) d\mathbf{x} &= \int_{\delta}^{1} r^{2} \int_{\mathbb{S}^{2}} \mathbf{h}(r, \mathbf{s}) d\mathbf{s} dr \\ &\approx \frac{1 - \delta}{2} \sum_{m=1}^{N_{\text{lgl}}} \sum_{n=1}^{N_{\text{leb}}} \omega_{m}^{\text{lgl}} \omega_{n}^{\text{leb}} \left(\frac{1 - \delta}{2} (\mathbf{x}_{m} + 1) + \delta \right)^{2} \\ &\times h \left(\frac{1 - \delta}{2} (\mathbf{x}_{m} + 1) + \delta, \mathbf{s}_{n} \right). \end{split}$$

¹Haxton: J.Phy.B, 40, 4443, 2007 ²Parter: JSC, 14, 347-355, 1999

Model Problem ddPB Method ddPB Derivation Numerical Studies Conclusions and Outlook

• Energy Computation¹

$$\mathsf{E}_{\mathsf{s}} = \frac{\beta}{2} \int_{\Omega} \rho^{\mathsf{sol}}(\mathbf{x}) \psi_{\mathsf{r}}(\mathbf{x}) + \frac{\beta^2 \kappa^2 \varepsilon_{\mathsf{s}}}{8\pi} \int_{\Omega} \lambda(\mathbf{x}) \left(\psi_{\mathsf{r}}(\mathbf{x}) \sinh\left(\psi_{\mathsf{r}}(\mathbf{x})\right) - 2\cosh\left(\psi_{\mathsf{r}}(\mathbf{x})\right)\right)$$

Model Problem ddPB Method ddPB Derivation Numerical Studies Conclusions and Outlook

• Energy Computation¹

$$E_{s} = \frac{\beta}{2} \int_{\Omega} \rho^{\text{sol}}(\mathbf{x}) \psi_{\mathsf{r}}(\mathbf{x}) + \frac{\beta^{2} \kappa^{2} \varepsilon_{\mathsf{s}}}{8\pi} \int_{\Omega} \lambda(\mathbf{x}) \left(\psi_{\mathsf{r}}(\mathbf{x}) \sinh\left(\psi_{\mathsf{r}}(\mathbf{x})\right) - 2\cosh\left(\psi_{\mathsf{r}}(\mathbf{x})\right)\right)$$

• Stopping Criteria

I

• Global Iterative Process

$$|E_s^k - E_s^{k-1}|/|E_s^k| \le \mathsf{tol}$$

Model Problem ddPB Method ddPB Derivation Numerical Studies Conclusions and Outlook

• Energy Computation¹

$$\mathsf{E}_{\mathsf{s}} = \frac{\beta}{2} \int_{\Omega} \rho^{\mathsf{sol}}(\mathbf{x}) \psi_{\mathsf{r}}(\mathbf{x}) + \frac{\beta^2 \kappa^2 \varepsilon_{\mathsf{s}}}{8\pi} \int_{\Omega} \lambda(\mathbf{x}) \left(\psi_{\mathsf{r}}(\mathbf{x}) \sinh\left(\psi_{\mathsf{r}}(\mathbf{x})\right) - 2\cosh\left(\psi_{\mathsf{r}}(\mathbf{x})\right)\right)$$

- Stopping Criteria
 - Global Iterative Process

$$|E_s^k - E_s^{k-1}| / |E_s^k| \le \text{tol}$$

• DD loop

$$\frac{\|\mathbf{X}_{\mathsf{r}}^{\mathsf{k}} - \mathbf{X}_{\mathsf{r}}^{\mathsf{k}-1}\|_{\ell^2}}{\|\mathbf{X}_{\mathsf{r}}^{\mathsf{k}}\|_{\ell^2}} \le 10 \times \mathsf{tol}$$

Numerical Studies Conclusions and Outlook

• Energy Computation¹

$$\mathsf{E}_{\mathsf{s}} = \frac{\beta}{2} \int_{\Omega} \rho^{\mathsf{sol}}(\mathbf{x}) \psi_{\mathsf{r}}(\mathbf{x}) + \frac{\beta^2 \kappa^2 \varepsilon_{\mathsf{s}}}{8\pi} \int_{\Omega} \lambda(\mathbf{x}) \left(\psi_{\mathsf{r}}(\mathbf{x}) \sinh\left(\psi_{\mathsf{r}}(\mathbf{x})\right) - 2\cosh\left(\psi_{\mathsf{r}}(\mathbf{x})\right)\right)$$

- Stopping Criteria
 - Global Iterative Process

$$|E_s^k - E_s^{k-1}| / |E_s^k| \le \mathsf{tol}$$

• DD loop

$$\frac{\|\boldsymbol{\mathsf{X}}_{\mathsf{r}}^{\mathsf{k}} - \boldsymbol{\mathsf{X}}_{\mathsf{r}}^{\mathsf{k}-1}\|_{\ell^2}}{\|\boldsymbol{\mathsf{X}}_{\mathsf{r}}^{\mathsf{k}}\|_{\ell^2}} \le 10 \times \mathsf{tol}$$

• Matrix loop

$$\frac{\|{\sf X}_{{\sf r},{\sf i}}^{\,\,{\sf k}}-{\sf X}_{{\sf r},{\sf i}}^{\,\,{\sf k}}-1}\|_{\ell^2}}{\|{\sf X}_{{\sf r},{\sf i}}^{\,\,{\sf k}}\|_{\ell^2}} \le 100\times{\sf tol}$$

Model Problem ddPB Method ddPB Derivation Numerical Studies Conclusions and Outlook

• Constants in the model

Model Problem ddPB Method ddPB Derivation Numerical Studies Conclusions and Outlook

- Constants in the model
 - ε_s: 78.54
 - κ: 0.104 Å⁻¹
 - ∘ *r_p*: 1.4 Å
 - T: 298.15 K
 - tol: 10^{-7}

- Constants in the model
 - ε_s: 78.54
 - κ: 0.104 Å⁻¹
 - ∘ *r_p*: 1.4 Å
 - T: 298.15 K
 - tol: 10^{-7}
 - Conversion to atomic units

Potential for One Sphere

- Discretisation Parameters: N = 20, $N_{lgl} = 200$
- Geometric Parameters: $r_1 = 2$ Å, $r_0 = 1$ Å, a = 0 Å

Variation of ψ_{r}

Model Problem ddPB Method ddPB Derivation Numerical Studies Conclusions and Outlook

- Discretisation Parameters: N = 20, $N_{lgl} = 200$
- Geometric Parameters: $r_1 = 2$ Å, $r_0 = 10$ Å, a = 0 Å

• $\operatorname{Var}_{\psi}(r) := |\psi_{\operatorname{PB}}(r) - \psi_{\operatorname{LPB}}(r)|$

Effect of Discretisation Parameters

- Discretisation Parameters: N = 30, $N_{lgl} = 300$
- Geometric Parameters: $r_1 = 2$ Å, $r_0 = 5$ Å, a = 0 Å

Effect of Discretisation Parameters

Model Problem ddPB Method ddPB Derivation Numerical Studies Conclusions and Outlook

- Discretisation Parameters: N = 30, $N_{lgl} = 300$
- Geometric Parameters: $r_1 = 2$ Å, $r_0 = 5$ Å, a = 0 Å

• Similar observations for spherical discretisation

Convergence of Global Strategy

- Caffeine Molecule
- Discretisation Parameters: N = 15, $N_{lgl} = 50$, $\ell_{max} = 9$, $N_{leb} = 350$
- Geometric Parameters: $r_0 = 5 \text{ Å}$, a = 1 Å

- Hydrogen Fluoride Molecule
- Discretisation Parameters: N = 15, $N_{lgl} = 50$, $\ell_{max} = 8$, $N_{leb} = 1202$
- Geometric Parameters: $r_0 = 2 \text{ Å}$

Rotational Symmetry

- Hydrogen Fluoride Molecule
- Discretisation Parameters: N = 15, $N_{lgl} = 50$
- Geometric Parameters: $r_0 = 2 \text{ Å}$, a = 1 Å

Visualisation of Potential

Model Problem ddPB Method ddPB Derivation Numerical Studies Conclusions and Outlook

- Visualisation of ψ_r
- Discretisation Parameters: N = 15, $N_{lgl} = 50$, $\ell_{max} = 11$, $N_{leb} = 1202$
- Geometric Parameters: $r_0 = 1$ Å, a = 0.5 Å

Effect of κ

- Hydrogen Fluoride Molecule
- Variation of κ
- Discretisation Parameters: N = 15, $N_{lgl} = 30$, $\ell_{max} = 7$, $N_{leb} = 86$
- Geometric Parameters: $r_0 = 0$ Å, a = 0 Å

Conclusions and Outlook

Model Problem ddPB Method ddPB Derivation Numerical Studies Conclusions and Outlook

Conclusions¹

• Formulation of domain decomposition method for PB equations

¹J., Stamm, arXiv: 2309.06862, 2023

²Nottoli, Herbst, J., Lipparini, Mikhalev, Stamm, ddX: https://github.com/ddsolvation/ddX

Conclusions and Outlook

Model Problem ddPB Method ddPB Derivation Numerical Studies Conclusions and Outlook

- Conclusions¹
 - Formulation of domain decomposition method for PB equations
 - Development of a non-linear solver

²Nottoli, Herbst, J., Lipparini, Mikhalev, Stamm, ddX: https://github.com/ddsolvation/ddX

¹J., Stamm, arXiv: 2309.06862, 2023

Model Problem ddPB Method ddPB Derivation Numerical Studies Conclusions and Outlook

- Conclusions¹
 - Formulation of domain decomposition method for PB equations
 - Development of a non-linear solver
 - Inclusion of Steric effects

¹ J., Stamm, arXiv: 2309.06862, 2023

²Nottoli, Herbst, J., Lipparini, Mikhalev, Stamm, ddX: https://github.com/ddsolvation/ddX

Model Problem ddPB Method ddPB Derivation Numerical Studies Conclusions and Outlook

- Conclusions¹
 - Formulation of domain decomposition method for PB equations
 - Development of a non-linear solver
 - Inclusion of Steric effects
 - Current implementation for small molecules

¹J., Stamm, arXiv: 2309.06862, 2023

²Nottoli, Herbst, J., Lipparini, Mikhalev, Stamm, ddX: https://github.com/ddsolvation/ddX

Model Problem ddPB Method ddPB Derivation Numerical Studies Conclusions and Outlook

- Conclusions¹
 - Formulation of domain decomposition method for PB equations
 - Development of a non-linear solver
 - Inclusion of Steric effects
 - Current implementation for small molecules
- Outlook
 - Implementation to ddX library²

²Nottoli, Herbst, J., Lipparini, Mikhalev, Stamm, ddX: https://github.com/ddsolvation/ddX

29

¹J., Stamm, arXiv: 2309.06862, 2023

Model Problem ddPB Method ddPB Derivation Numerical Studies Conclusions and Outlook

- Conclusions¹
 - Formulation of domain decomposition method for PB equations
 - Development of a non-linear solver
 - Inclusion of Steric effects
 - Current implementation for small molecules
- Outlook
 - Implementation to ddX library²
 - Acceleration techniques

²Nottoli, Herbst, J., Lipparini, Mikhalev, Stamm, ddX: https://github.com/ddsolvation/ddX

29

¹ J., Stamm, arXiv: 2309.06862, 2023

Model Problem ddPB Method ddPB Derivation Numerical Studies Conclusions and Outlook

- Conclusions¹
 - Formulation of domain decomposition method for PB equations
 - Development of a non-linear solver
 - Inclusion of Steric effects
 - Current implementation for small molecules
- Outlook
 - Implementation to ddX library²
 - Acceleration techniques

Thank You!

¹J., Stamm, arXiv: 2309.06862, 2023

²Nottoli, Herbst, J., Lipparini, Mikhalev, Stamm, ddX: https://github.com/ddsolvation/ddX

29