

Weierstrass Institute for Applied Analysis and Stochastics

Investigation of different solvers for Nonlinear Algebraic Stabilizations of Convection-Diffusion Equations

<u>Abhinav Jha</u> (Freie Universität, Berlin), Volker John (WIAS Berlin and Freie Universität Berlin)

Mohrenstrasse 39 · 10117 Berlin · Germany · Tel. +49 30 20372 0 · www.wias-berlin.de VMS 2018, Berlin, 05.12.–07.12. 2018

1 Algebraic Flux Correction Schemes

2 Iteration Schemes

- 3 Numerical Studies of the 2d Hemker problem
- 4 Numerical Studies of the 3d Hemker problem
- 5 Numerical Studies for non-constant convection

6 Conclusion

1 Algebraic Flux Correction (AFC) Schemes

Libriz

Steady-state convection-diffusion-reaction equation

$$\begin{split} -\varepsilon \Delta u + \boldsymbol{b} \cdot \nabla u + c u &= g & \text{ in } \Omega \\ u &= u^b & \text{ on } \partial \Omega_{\mathrm{D}}, \\ -\varepsilon \nabla u \cdot \boldsymbol{n} &= 0 & \text{ on } \partial \Omega_{\mathrm{N}} \end{split}$$

- $\circ \ \Omega$ bounded polyhedral Lipschitz domain in $\mathbb{R}^d, d \in \{2,3\}$
- $\circ \, n$ outward pointing unit normal
- $\circ~$ Interested in convection-dominated regime $\varepsilon \ll \| \boldsymbol{b} \|$

- Ideal discretization
 - $1. \ \, {\rm Accurate \ and \ sharp \ layers}$
 - Many discretizations satisfy this property, e.g., SUPG
 - Reasonably well for AFC schemes
 - 2. Physically consistent results (no spurious oscillations)
 - Most discretizations violate this property, e.g., SUPG, SOLD schemes
 - Satisfied for AFC schemes
 - 3. Efficient computation of the solutions
 - Satisfied for linear discretizations
 - Usually not satisfied for nonlinear discretizations, like AFC schemes
- Because of 2nd property: AFC schemes very well suited for applications
- $\bullet\,$ This talk: Present results with respect to the 3^{rd} property

- Derivation
 - Galerkin FEM (Algebraic form)

$$\sum_{j=1}^{N} a_{ij} u_j = g_i, \quad i = 1, \dots, M,$$
$$u_i = u_i^b, \quad i = M + 1, \dots, N$$

 \circ Artificial diffusion matrix D

$$d_{ij} = d_{ji} = -\max\{a_{ij}, 0, a_{ji}\} \ \forall \ i \neq j, \quad d_{ii} = -\sum_{i \neq j} d_{ij}$$

Anti-diffusive fluxes

$$f_{ij} = d_{ij}(u_j - u_i), \quad f_{ij} = -f_{ji}, \quad i, j = 1, \dots, N$$

- Derivation (cont.)
 - Solution-dependent coefficients

$$\alpha_{ij} = \alpha_{ji}, \quad i, j = 1, \dots, N$$

with

$$\alpha_{ij} \in [0,1]$$

Final scheme

$$\sum_{j=1}^{N} a_{ij} u_j + \sum_{j=1}^{N} (1 - \alpha_{ij}) d_{ij} (u_j - u_i) = g_i, \quad i = 1, \dots, M,$$
$$u_i = u_i^b, \quad i = M + 1, \dots, N$$

Limiters

- Kuzmin limiter [1]
- BJK limiter [2]
- Analytical properties in [2,3,4]
- BJK limiter in general more accurate [4]

[1] Kuzmin: in Proc. Int. Conf. Comput. Meth. for Coupled Problems in Science and Engineering, CIMNE, 2007

- [2] Barrenechea, John, Knobloch: M3AS 27, 525-548, 2017
- [3] Barrenechea, John, Knobloch: SINUM 54, 2427-2451, 2016
- [4] Barrenechea, John, Knobloch, Rankin: SeMA Journal 75, 655-685, 2018

Investigation of different solvers for Nonlinear Algebraic Stabilizations of Convection-Diffusion Equations VMS 2018, Berlin, 05.12.–07.12. 2018 · Page 7 (44)

- Kuzmin limiter [1], (Non-differentiable operations)
 - Compute

$$P_i^+ := \sum_{\substack{j=1\\a_{ji} \le a_{ij}}}^N f_{ij}^+, \ P_i^- := \sum_{\substack{j=1\\a_{ji} \le a_{ij}}}^N f_{ij}^-, \ Q_i^+ := -\sum_{j=1}^N f_{ij}^-, \ Q_i^- := -\sum_{j=1}^N f_{ij}^+,$$

with $f_{ij}^+ = \max\{0, f_{ij}\}$ and $f_{ij}^- = \min\{0, f_{ij}\}$

• Compute

$$R_i^+ := \min\left\{1, \frac{Q_i^+}{P_i^+}\right\}, \quad R_i^- := \min\left\{1, \frac{Q_i^-}{P_i^-}\right\}$$

 \circ If $a_{ji} \leq a_{ij}$, set

$$\alpha_{ij} := \left\{ \begin{array}{ll} R_i^+ & \text{if } f_{ij} > 0 \\ 1 & \text{if } f_{ij} = 0 \\ R_i^- & \text{if } f_{ij} < 0 \end{array} \right. \qquad \alpha_{ji} := \alpha_{ij}$$

[1] Kuzmin: in Proc. Int. Conf. Comput. Meth. for Coupled Problems in Science and Engineering, CIMNE, 2007

- BJK limiter [1]
 - $\circ~$ Set for appropriate index set S_i and sufficiently large value γ_i

$$u_i^{\max} := \max_{j \in S_i \cup \{i\}} u_j, \quad u_i^{\min} := \min_{j \in S_i \cup \{i\}} u_j, \quad q_i = \gamma_i \sum_{j \in S_i} d_{ij}$$

Compute

$$P_i^+ := \sum_{j \in S_i} f_{ij}^+, \ P_i^- := \sum_{j \in S_i} f_{ij}^-, \ Q_i^+ := q_i(u_i - u_i^{\max}), \ Q_i^- := q_i(u_i - u_i^{\min})$$

• Compute

$$R_i^+ := \min\left\{1, \frac{Q_i^+}{P_i^+}\right\}, \quad R_i^- := \min\left\{1, \frac{Q_i^-}{P_i^-}\right\}$$

Set

$$\bar{\alpha}_{ij} := \begin{cases} R_i^+ & \text{if } f_{ij} > 0\\ 1 & \text{if } f_{ij} = 0\\ R_i^- & \text{if } f_{ij} < 0 \end{cases}, \quad \alpha_{ij} := \min\{\bar{\alpha}_{ij}, \bar{\alpha}_{ji}\}$$

[1] Barrenechea, John, Knobloch: M3AS 27, 525-548, 2017

2 Iteration Schemes

- Given iterate $u^{(m)}$
- Fixed point iteration with changing matrix (FPM)

$$\sum_{j=1}^{N} a_{ij} \, \tilde{u}_{j}^{(m+1)} + \sum_{j=1}^{N} \left(1 - \alpha_{ij}^{(m)} \right) d_{ij} \, \left(\tilde{u}_{j}^{(m+1)} - \tilde{u}_{i}^{(m+1)} \right) = g_{i},$$
$$\tilde{u}_{i}^{(m+1)} = u_{i}^{b}$$

• Fixed point iteration with fixed matrix (FPR): Using

$$\sum_{j=1}^{N} (1 - \alpha_{ij}) d_{ij}(u_j - u_i) = \sum_{j=1}^{N} d_{ij} u_j - u_i \sum_{\substack{j=1\\ =0}}^{N} d_{ij} - \sum_{j=1}^{N} \alpha_{ij} d_{ij}(u_j - u_i),$$

gives

$$\sum_{j=1}^{N} (a_{ij} + d_{ij}) \tilde{u}_{j}^{(m+1)} = g_{i} + \sum_{j=1}^{N} \alpha_{ij}^{(m)} f_{ij}^{(m)}, \quad i = 1, \dots, M,$$
$$\tilde{u}_{i}^{(m+1)} = u_{i}^{b}, \qquad i = M+1, \dots, N$$

- Fixed point iterations
 - Fixed point iteration with fixed matrix (FPR)
 - Matrix is M-matrix
 - With direct sparse solver: factorization is needed only once
 - Fixed point iteration with changing matrix (FPM)
 - More implicit approach, hope for better convergence properties
 - o General fixed point iteration by linear combination

$$\begin{split} \sum_{j=1}^{N} \left(a_{ij} + d_{ij} \right) \tilde{u}_{j}^{(m+1)} &- \omega_{\rm fp} \sum_{j=1}^{N} \alpha_{ij}^{(m)} d_{ij} \left(\tilde{u}_{j}^{(m+1)} - \tilde{u}_{i}^{(m+1)} \right) \\ &= g_{i} + (1 - \omega_{\rm fp}) \sum_{j=1}^{N} \alpha_{ij}^{(m)} f_{ij}^{(m)}, \quad i = 1, \dots, M, \\ \tilde{u}_{i}^{(m+1)} &= u_{i}^{b}, \qquad \qquad i = M + 1, \dots, N \end{split}$$

- Formal Newton method
 - Formal derivation of Jacobian

$$DF\left(\underline{u}^{(m)}\right)_{ij} = \begin{cases} a_{ij} + d_{ij} - \alpha_{ij}^{(m)} d_{ij} - \sum_{k=1}^{N} \frac{\partial \alpha_{ik}^{(m)}}{\partial u_{j}} d_{ik} \left(u_{k}^{(m)} - u_{i}^{(m)}\right) & \text{if } i \neq j, \\ a_{ii} + d_{ii} + \sum_{\substack{j=1\\ j \neq i}}^{N} \alpha_{ij}^{(m)} d_{ij} - \sum_{k=1}^{N} \frac{\partial \alpha_{ik}^{(m)}}{\partial u_{i}} d_{ik} \left(u_{k}^{(m)} - u_{i}^{(m)}\right) & \text{if } i = j \end{cases}$$

- Formal Newton method: how to deal with non-smooth cases?
- Discussion only for Kuzmin limiter
 - Involves maxima and minima of two arguments, one of them is constant
 - 1. Non-regularized approach
 - Take one-sided derivative w.r.t. constant, i.e., set value to zero
 - 2. Regularized approach
 - Replace maximum for some $\sigma>0$ by [1]

$$\max_{\sigma}(x,y) = \frac{1}{2} \left(x + y + \sqrt{(x-y)^2 + \sigma} \right)$$

- We did not regularized the limiter in the equation, only in the iteration matrix, since
 - · In our opinion: solution should not depend on solver
 - · Analytical results from literature are not longer applicable

^[1] Badia, Bonilla: CMAME 313, 133-158, 2017

• General form of the matrix

- Similar for diagonal entries
- o Some modifications for regularized Newton approach
- Iteration

$$\underline{u}^{(m+1)} = \underline{u}^{(m)} + \omega \left(\underline{\tilde{u}}^{(m+1)} - \underline{u}^{(m)} \right)$$

- Algorithmic components
 - Adaptive choice of damping parameter [1]
 - Anderson acceleration [2]
 - Projection to admissible values [3]
 - Selection of initial iterate

[1] John, Knobloch: CMAME 197, 1997-2014, 2008

- [2] Walker, Ni: SINUM 49(4), 1715-1735, 2011
- [3] Badia, Bonilla: CMAME 313, 133-158, 2017

3 Numerical Studies of the 2d Hemker problem

• Various values of $\varepsilon,$ $\pmb{b}=(1,0)^T,$ c=g=0

- Standard benchmark problem
- P_1 and Q_1 finite elements
- Stopping criteria
 - $\circ \|\text{residual}\|_2 \le \sqrt{\# \text{ dof } 10^{-10}}$
 - 25000 iterations

3 Numerical Studies of the 2d Hemker problem

 Q_1 grid for Hemker example

3 Numerical Studies at the 2d Hemker Example

- Kuzmin limiter, P_1 , dependency on initial iterate
- General fixed point iteration, $\varepsilon = 10^{-4}, 10^{-6}$
 - Zero in all degrees of freedom
 - Galerkin FEM
 - SUPG
 - Upwind FEM

• Only minor differences

- Kuzmin limiter, P₁
- General fixed point iteration, $\varepsilon = 10^{-6}$

Without projection

- o Number of iterations increases with level
- $\circ \ \omega_{\mathrm{fp}} = 0$: FPR method
- $\circ~$ Very slow or even no convergence for FPM method ($\omega_{\rm fp}=1)$
- $\circ~$ Good parameter in general fixed point iteration is $\omega_{\rm fp}=0.85$
- o Minimal difference after projection to admissible values

- Kuzmin limiter, P_1
- Anderson acceleration with $\omega_{\rm fp}=0.85,\,\varepsilon=10^{-4},10^{-6}$

 $\circ~\varepsilon=10^{-4},$ 20 or 50 Anderson vectors reduced number of iterations $\circ~\varepsilon=10^{-6},$ reduction of iterations only on coarse grids

- Similar observations for other small values of ε
- Projection to admissible values don't affect the solution that much
- Summary so far: Slow convergence for FPM method
 - $\circ~$ Expectation that damping of formal Newton term also necessary: $\omega_{
 m jac}$
 - Preliminary tests showed that appropriate value depends on refinement level
 - That's why: simple adaptive choice based on the value of the reduction of the norm of the residual
 - $\circ~$ Formal Newton term only activated if norm of residual is small ($\leq 10^{-5})$

- Kuzmin limiter, P_1 , start with SUPG solution
- Formal Newton method: $\omega_{\rm fp} = 0.85, \omega_{\rm jac}$ adaptive

- Fixed damping reduces iterations only on coarse grid
- \circ Formal Newton with adaptive $\omega_{
 m jac}$ needs less iterations
- $\circ~$ Regularized Newton with adaptive $\omega_{\rm jac}$ requires more iterations than $\omega_{\rm fp}=0.85$

- Kuzmin limiter, Q_1 , start with SUPG solution
- General fixed point iteration, $\varepsilon = 10^{-4}, 10^{-6}$

• Similar observations as P1 elements

- Kuzmin limiter, Q_1 , start with SUPG solution
- Formal Newton method: $\omega_{\rm fp}=0.85, \omega_{\rm jac}$ adaptive

• Similar observations as P1 elements

- BJK limiter, P_1
- General fixed point iteration

 $\circ \ \varepsilon = 10^{-4}$

- Good value is $\omega_{\mathrm{fp}}=0.95$
- Very slow convergence for $\omega_{\mathrm{fp}}=1$
- $\circ \ \varepsilon = 10^{-6}$
 - No solver worked on level 5

- BJK limiter, P_1
- Anderson acceleration with $\omega_{\rm fp}=0.95, \, \varepsilon=10^{-4}, 10^{-6}$

Anderson acceleration worsens the convergence for all simulations

- BJK limiter, $P_1, \varepsilon = 10^{-4}$
- Formal Newton method

 $\circ \ \varepsilon = 10^{-4}$

- $-\,$ Formal Newton with adaptive ω_{jac} needs less iterations without projection
- Method doesn't converge for fine grids if projection is used

- BJK limiter, P_1 , $\varepsilon = 10^{-6}$
- Formal Newton method

 $\circ \ \varepsilon = 10^{-6}$

- Some formal Newton method requires less iteration on coarse grids
- Some methods behaved differently with and without projection
- · No uniform method that works for all cases

- Efficiency in terms of computing time
- Direct sparse solver (UMFPACK)

- $\circ~$ Fixed point iteration with $\omega_{\rm fp}=0$ generally the best (often one order of magnitude)
 - Factorization of matrix only once

4 Numerical Studies of the 3d Hemker problem

• Extension of the 2d problem with domain $\Omega = \left\{ \{(-3,9) \times (-3,3)\} \setminus \left\{(x,y) : x^2 + y^2 \le 1 \right\} \right\} \times (0,6)$

- P_1 finite elements
- Stopping criteria
 - $\circ \|\text{residual}\|_2 \le \sqrt{\# \text{ dof }} 10^{-10}$
 - 25000 iterations
- Non converging iterations after projection to admissible values

Lnibniz

4 Numerical Studies of the 3d Hemker problem

 P_1 grid for Hemker example [1]

[1] Wilbrandt et.al, : CAMWA 74, 74-88, 2017

Investigation of different solvers for Nonlinear Algebraic Stabilizations of Convection-Diffusion Equations · VMS 2018, Berlin, 05.12.–07.12. 2018 · Page 31 (44)

- Kuzmin limiter, P_1
- General fixed point iteration, $\varepsilon = 10^{-4}, 10^{-6}$

- o Number of iterations increases with level
- $\circ~$ Good parameter in general fixed point iteration is $\omega_{\mathrm{fp}}=0.5$

- Kuzmin limiter, P_1
- Anderson acceleration with $\omega_{\rm fp}=0.5, \, \varepsilon=10^{-4}, 10^{-6}$

10 or 20 Anderson vectors significantly reduced the number of iterations

- Kuzmin limiter, P_1 , start with SUPG solution
- Formal Newton method: $\omega_{\rm fp}=0.5, \omega_{\rm jac}$ adaptive

Formal Newton method reduced iterations but not considerably.

- BJK limiter, P_1
- General fixed point iteration

$$\circ \epsilon = 10^{-4}$$

- Good value is $\omega_{
 m fp}=0.7$
- $\circ \ \varepsilon = 10^{-6}$
 - No solver worked for finer grids
- Anderson acceleration similar to 2d Hemker problem

5 Numerical Studies for non-constant convection

• Various values of $\varepsilon,$ $\pmb{b}=(1,l(x),l(x))^T,$ c=g=0, where $l(x)=(0.19x^3-1.42x^2+2.38x)/4$

- Proposed in [1]
- P₁ finite elements
- Stopping criteria
 - $\circ \|\text{residual}\|_2 \le \sqrt{\# \text{ dof }} 10^{-10}$
 - 25000 iterations

[1] Barrenechea, John, Knobloch, Rankin: SeMA Journal 75, 655-685, 2018

5 Numerical Studies for non-constant convection

 P_1 grid for the example [1]

[1] Geuzaine, Remacle, IJNME 79(11), 1309-131, 2009

Investigation of different solvers for Nonlinear Algebraic Stabilizations of Convection-Diffusion Equations · VMS 2018, Berlin, 05.12.–07.12. 2018 · Page 37 (44)

- Kuzmin limiter, P_1
- General fixed point iteration, $\varepsilon = 10^{-4}, 10^{-6}$

- $\circ~$ Converges for small ω_{fp}
- $\circ~$ Good parameter in general fixed point iteration is $\omega_{\mathrm{fp}}=0.6$
- o Minimal difference after projection to admissible values

- Kuzmin limiter, P_1
- Anderson acceleration with $\omega_{\rm fp}=0.6,\,\varepsilon=10^{-4},10^{-6}$

o 10, 20 or 50 Anderson vectors reduce number of iterations

- Kuzmin limiter, P_1 , start with SUPG solution
- Formal Newton method: $\omega_{\rm fp}=0.6, \omega_{\rm jac}$ adaptive

 $\circ~$ Formal Newton with adaptive doesn't improve the convergence as compared to $\omega_{\rm fp}=0.6$

- BJK limiter, P_1
- General fixed point iteration

- $\circ~$ Similar behavior to Kuzmin, i.e., small $\omega_{
 m fp}$
- Needed more iterations as compared to Kuzmin

- BJK limiter, P_1
- Formal Newton method

- o Iterative solvers failed, hence direct solvers were used
- Because of limit on computation only values at three levels were computed
- Newton without damping reduces significant number of iterations on level 2, 3

- Efficiency in terms of computing time
- Direct sparse solver (UMFPACK) for FPR method
- Iterative solver (GMRES) with preconditioner (SSOR) for other methods

- o For fine grids iterative solvers work better
- $\circ~$ Fixed point iteration with $\omega_{
 m fp}=0$ and iterative solvers takes the least time

6 Conclusion

- Studied several methods for solving nonlinear problems arising in AFC schemes
 - Fixed point iteration with change of right-hand side
 - General fixed point iteration with change of matrix and right-hand side
 - Formal Newton-type method (based on formal derivation)
 - Regularization of formal Newton-type method (only for Kuzmin limiter)
 - Algorithmic components
- Observations
 - With appropriate parameters there is some gain w.r.t. the number of iterations for more complicated methods
 - Easier to solve problems for Kuzmin limiter than for BJK limiter
 - With an appropriate solver:FPR is usually most efficient

